scatter.py 5.82 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
import warnings
rusty1s's avatar
rusty1s committed
2
3
4
5
6
import os.path as osp
from typing import Optional, Tuple

import torch

rusty1s's avatar
rusty1s committed
7
8
9
10
11
12
try:
    torch.ops.load_library(
        osp.join(osp.dirname(osp.abspath(__file__)), '_scatter.so'))
except OSError:
    warnings.warn('Failed to load `scatter` binaries.')

rusty1s's avatar
rusty1s committed
13
14
15
    def scatter_placeholder(src: torch.Tensor, index: torch.Tensor, dim: int,
                            out: Optional[torch.Tensor],
                            dim_size: Optional[int]) -> torch.Tensor:
rusty1s's avatar
rusty1s committed
16
        raise ImportError
rusty1s's avatar
rusty1s committed
17
        return src
rusty1s's avatar
rusty1s committed
18

rusty1s's avatar
rusty1s committed
19
20
21
22
    def scatter_with_arg_placeholder(src: torch.Tensor, index: torch.Tensor,
                                     dim: int, out: Optional[torch.Tensor],
                                     dim_size: Optional[int]
                                     ) -> Tuple[torch.Tensor, torch.Tensor]:
rusty1s's avatar
rusty1s committed
23
        raise ImportError
rusty1s's avatar
rusty1s committed
24
        return src, index
rusty1s's avatar
rusty1s committed
25

rusty1s's avatar
rusty1s committed
26
27
28
29
    torch.ops.torch_scatter.scatter_sum = scatter_placeholder
    torch.ops.torch_scatter.scatter_mean = scatter_placeholder
    torch.ops.torch_scatter.scatter_min = scatter_with_arg_placeholder
    torch.ops.torch_scatter.scatter_max = scatter_with_arg_placeholder
rusty1s's avatar
rusty1s committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71


@torch.jit.script
def scatter_sum(src: torch.Tensor, index: torch.Tensor, dim: int = -1,
                out: Optional[torch.Tensor] = None,
                dim_size: Optional[int] = None) -> torch.Tensor:
    return torch.ops.torch_scatter.scatter_sum(src, index, dim, out, dim_size)


@torch.jit.script
def scatter_add(src: torch.Tensor, index: torch.Tensor, dim: int = -1,
                out: Optional[torch.Tensor] = None,
                dim_size: Optional[int] = None) -> torch.Tensor:
    return torch.ops.torch_scatter.scatter_sum(src, index, dim, out, dim_size)


@torch.jit.script
def scatter_mean(src: torch.Tensor, index: torch.Tensor, dim: int = -1,
                 out: Optional[torch.Tensor] = None,
                 dim_size: Optional[int] = None) -> torch.Tensor:
    return torch.ops.torch_scatter.scatter_mean(src, index, dim, out, dim_size)


@torch.jit.script
def scatter_min(src: torch.Tensor, index: torch.Tensor, dim: int = -1,
                out: Optional[torch.Tensor] = None,
                dim_size: Optional[int] = None
                ) -> Tuple[torch.Tensor, torch.Tensor]:
    return torch.ops.torch_scatter.scatter_min(src, index, dim, out, dim_size)


@torch.jit.script
def scatter_max(src: torch.Tensor, index: torch.Tensor, dim: int = -1,
                out: Optional[torch.Tensor] = None,
                dim_size: Optional[int] = None
                ) -> Tuple[torch.Tensor, torch.Tensor]:
    return torch.ops.torch_scatter.scatter_max(src, index, dim, out, dim_size)


def scatter(src: torch.Tensor, index: torch.Tensor, dim: int = -1,
            out: Optional[torch.Tensor] = None, dim_size: Optional[int] = None,
            reduce: str = "sum") -> torch.Tensor:
rusty1s's avatar
rusty1s committed
72
73
74
75
76
77
78
79
80
81
    r"""
    |

    .. image:: https://raw.githubusercontent.com/rusty1s/pytorch_scatter/
            master/docs/source/_figures/add.svg?sanitize=true
        :align: center
        :width: 400px

    |

rusty1s's avatar
rusty1s committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
    Reduces all values from the :attr:`src` tensor into :attr:`out` at the
    indices specified in the :attr:`index` tensor along a given axis
    :attr:`dim`.
    For each value in :attr:`src`, its output index is specified by its index
    in :attr:`src` for dimensions outside of :attr:`dim` and by the
    corresponding value in :attr:`index` for dimension :attr:`dim`.
    The applied reduction is defined via the :attr:`reduce` argument.

    Formally, if :attr:`src` and :attr:`index` are :math:`n`-dimensional
    tensors with size :math:`(x_0, ..., x_{i-1}, x_i, x_{i+1}, ..., x_{n-1})`
    and :attr:`dim` = `i`, then :attr:`out` must be an :math:`n`-dimensional
    tensor with size :math:`(x_0, ..., x_{i-1}, y, x_{i+1}, ..., x_{n-1})`.
    Moreover, the values of :attr:`index` must be between :math:`0` and
    :math:`y - 1` in ascending order.
    The :attr:`index` tensor supports broadcasting in case its dimensions do
    not match with :attr:`src`.

    For one-dimensional tensors with :obj:`reduce="sum"`, the operation
    computes
rusty1s's avatar
rusty1s committed
101
102

    .. math::
rusty1s's avatar
rusty1s committed
103
        \mathrm{out}_i = \mathrm{out}_i + \sum_j~\mathrm{src}_j
rusty1s's avatar
rusty1s committed
104
105
106
107

    where :math:`\sum_j` is over :math:`j` such that
    :math:`\mathrm{index}_j = i`.

rusty1s's avatar
rusty1s committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
    .. note::

        This operation is implemented via atomic operations on the GPU and is
        therefore **non-deterministic** since the order of parallel operations
        to the same value is undetermined.
        For floating-point variables, this results in a source of variance in
        the result.

    :param src: The source tensor.
    :param index: The indices of elements to scatter.
    :param dim: The axis along which to index. (default: :obj:`-1`)
    :param out: The destination tensor.
    :param dim_size: If :attr:`out` is not given, automatically create output
        with size :attr:`dim_size` at dimension :attr:`dim`.
        If :attr:`dim_size` is not given, a minimal sized output tensor
        according to :obj:`index.max() + 1` is returned.
    :param reduce: The reduce operation (:obj:`"sum"`, :obj:`"mean"`,
        :obj:`"min"` or :obj:`"max"`). (default: :obj:`"sum"`)
rusty1s's avatar
rusty1s committed
126
127
128

    :rtype: :class:`Tensor`

rusty1s's avatar
rusty1s committed
129
    .. code-block:: python
rusty1s's avatar
rusty1s committed
130

rusty1s's avatar
rusty1s committed
131
        from torch_scatter import scatter
rusty1s's avatar
rusty1s committed
132

rusty1s's avatar
rusty1s committed
133
134
        src = torch.randn(10, 6, 64)
        index = torch.tensor([0, 1, 0, 1, 2, 1])
rusty1s's avatar
rusty1s committed
135

rusty1s's avatar
rusty1s committed
136
137
        # Broadcasting in the first and last dim.
        out = scatter(src, index, dim=1, reduce="sum")
rusty1s's avatar
rusty1s committed
138

rusty1s's avatar
rusty1s committed
139
        print(out.size())
rusty1s's avatar
rusty1s committed
140

rusty1s's avatar
rusty1s committed
141
    .. code-block::
rusty1s's avatar
rusty1s committed
142

rusty1s's avatar
rusty1s committed
143
        torch.Size([10, 3, 64])
rusty1s's avatar
rusty1s committed
144
    """
rusty1s's avatar
rusty1s committed
145
146
147
148
149
150
151
152
153
154
    if reduce == 'sum' or reduce == 'add':
        return scatter_sum(src, index, dim, out, dim_size)
    elif reduce == 'mean':
        return scatter_mean(src, index, dim, out, dim_size)
    elif reduce == 'min':
        return scatter_min(src, index, dim, out, dim_size)[0]
    elif reduce == 'max':
        return scatter_max(src, index, dim, out, dim_size)[0]
    else:
        raise ValueError