scatter.py 5.64 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
import warnings
rusty1s's avatar
rusty1s committed
2
3
4
5
6
import os.path as osp
from typing import Optional, Tuple

import torch

rusty1s's avatar
rusty1s committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
try:
    torch.ops.load_library(
        osp.join(osp.dirname(osp.abspath(__file__)), '_scatter.so'))
except OSError:
    warnings.warn('Failed to load `scatter` binaries.')

    def placeholder(src: torch.Tensor, index: torch.Tensor, dim: int,
                    out: Optional[torch.Tensor],
                    dim_size: Optional[int]) -> torch.Tensor:
        raise ImportError

    def arg_placeholder(src: torch.Tensor, index: torch.Tensor, dim: int,
                        out: Optional[torch.Tensor], dim_size: Optional[int]
                        ) -> Tuple[torch.Tensor, torch.Tensor]:
        raise ImportError

    torch.ops.torch_scatter.scatter_sum = placeholder
    torch.ops.torch_scatter.scatter_mean = placeholder
    torch.ops.torch_scatter.scatter_min = arg_placeholder
    torch.ops.torch_scatter.scatter_max = arg_placeholder
rusty1s's avatar
rusty1s committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68


@torch.jit.script
def scatter_sum(src: torch.Tensor, index: torch.Tensor, dim: int = -1,
                out: Optional[torch.Tensor] = None,
                dim_size: Optional[int] = None) -> torch.Tensor:
    return torch.ops.torch_scatter.scatter_sum(src, index, dim, out, dim_size)


@torch.jit.script
def scatter_add(src: torch.Tensor, index: torch.Tensor, dim: int = -1,
                out: Optional[torch.Tensor] = None,
                dim_size: Optional[int] = None) -> torch.Tensor:
    return torch.ops.torch_scatter.scatter_sum(src, index, dim, out, dim_size)


@torch.jit.script
def scatter_mean(src: torch.Tensor, index: torch.Tensor, dim: int = -1,
                 out: Optional[torch.Tensor] = None,
                 dim_size: Optional[int] = None) -> torch.Tensor:
    return torch.ops.torch_scatter.scatter_mean(src, index, dim, out, dim_size)


@torch.jit.script
def scatter_min(src: torch.Tensor, index: torch.Tensor, dim: int = -1,
                out: Optional[torch.Tensor] = None,
                dim_size: Optional[int] = None
                ) -> Tuple[torch.Tensor, torch.Tensor]:
    return torch.ops.torch_scatter.scatter_min(src, index, dim, out, dim_size)


@torch.jit.script
def scatter_max(src: torch.Tensor, index: torch.Tensor, dim: int = -1,
                out: Optional[torch.Tensor] = None,
                dim_size: Optional[int] = None
                ) -> Tuple[torch.Tensor, torch.Tensor]:
    return torch.ops.torch_scatter.scatter_max(src, index, dim, out, dim_size)


def scatter(src: torch.Tensor, index: torch.Tensor, dim: int = -1,
            out: Optional[torch.Tensor] = None, dim_size: Optional[int] = None,
            reduce: str = "sum") -> torch.Tensor:
rusty1s's avatar
rusty1s committed
69
70
71
72
73
74
75
76
77
78
    r"""
    |

    .. image:: https://raw.githubusercontent.com/rusty1s/pytorch_scatter/
            master/docs/source/_figures/add.svg?sanitize=true
        :align: center
        :width: 400px

    |

rusty1s's avatar
rusty1s committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
    Reduces all values from the :attr:`src` tensor into :attr:`out` at the
    indices specified in the :attr:`index` tensor along a given axis
    :attr:`dim`.
    For each value in :attr:`src`, its output index is specified by its index
    in :attr:`src` for dimensions outside of :attr:`dim` and by the
    corresponding value in :attr:`index` for dimension :attr:`dim`.
    The applied reduction is defined via the :attr:`reduce` argument.

    Formally, if :attr:`src` and :attr:`index` are :math:`n`-dimensional
    tensors with size :math:`(x_0, ..., x_{i-1}, x_i, x_{i+1}, ..., x_{n-1})`
    and :attr:`dim` = `i`, then :attr:`out` must be an :math:`n`-dimensional
    tensor with size :math:`(x_0, ..., x_{i-1}, y, x_{i+1}, ..., x_{n-1})`.
    Moreover, the values of :attr:`index` must be between :math:`0` and
    :math:`y - 1` in ascending order.
    The :attr:`index` tensor supports broadcasting in case its dimensions do
    not match with :attr:`src`.

    For one-dimensional tensors with :obj:`reduce="sum"`, the operation
    computes
rusty1s's avatar
rusty1s committed
98
99

    .. math::
rusty1s's avatar
rusty1s committed
100
        \mathrm{out}_i = \mathrm{out}_i + \sum_j~\mathrm{src}_j
rusty1s's avatar
rusty1s committed
101
102
103
104

    where :math:`\sum_j` is over :math:`j` such that
    :math:`\mathrm{index}_j = i`.

rusty1s's avatar
rusty1s committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    .. note::

        This operation is implemented via atomic operations on the GPU and is
        therefore **non-deterministic** since the order of parallel operations
        to the same value is undetermined.
        For floating-point variables, this results in a source of variance in
        the result.

    :param src: The source tensor.
    :param index: The indices of elements to scatter.
    :param dim: The axis along which to index. (default: :obj:`-1`)
    :param out: The destination tensor.
    :param dim_size: If :attr:`out` is not given, automatically create output
        with size :attr:`dim_size` at dimension :attr:`dim`.
        If :attr:`dim_size` is not given, a minimal sized output tensor
        according to :obj:`index.max() + 1` is returned.
    :param reduce: The reduce operation (:obj:`"sum"`, :obj:`"mean"`,
        :obj:`"min"` or :obj:`"max"`). (default: :obj:`"sum"`)
rusty1s's avatar
rusty1s committed
123
124
125

    :rtype: :class:`Tensor`

rusty1s's avatar
rusty1s committed
126
    .. code-block:: python
rusty1s's avatar
rusty1s committed
127

rusty1s's avatar
rusty1s committed
128
        from torch_scatter import scatter
rusty1s's avatar
rusty1s committed
129

rusty1s's avatar
rusty1s committed
130
131
        src = torch.randn(10, 6, 64)
        index = torch.tensor([0, 1, 0, 1, 2, 1])
rusty1s's avatar
rusty1s committed
132

rusty1s's avatar
rusty1s committed
133
134
        # Broadcasting in the first and last dim.
        out = scatter(src, index, dim=1, reduce="sum")
rusty1s's avatar
rusty1s committed
135

rusty1s's avatar
rusty1s committed
136
        print(out.size())
rusty1s's avatar
rusty1s committed
137

rusty1s's avatar
rusty1s committed
138
    .. code-block::
rusty1s's avatar
rusty1s committed
139

rusty1s's avatar
rusty1s committed
140
        torch.Size([10, 3, 64])
rusty1s's avatar
rusty1s committed
141
    """
rusty1s's avatar
rusty1s committed
142
143
144
145
146
147
148
149
150
151
    if reduce == 'sum' or reduce == 'add':
        return scatter_sum(src, index, dim, out, dim_size)
    elif reduce == 'mean':
        return scatter_mean(src, index, dim, out, dim_size)
    elif reduce == 'min':
        return scatter_min(src, index, dim, out, dim_size)[0]
    elif reduce == 'max':
        return scatter_max(src, index, dim, out, dim_size)[0]
    else:
        raise ValueError