scatter.py 5.6 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
from typing import Optional, Tuple

import torch

5
6
from .utils import broadcast

rusty1s's avatar
rusty1s committed
7
8
9
10
11

@torch.jit.script
def scatter_sum(src: torch.Tensor, index: torch.Tensor, dim: int = -1,
                out: Optional[torch.Tensor] = None,
                dim_size: Optional[int] = None) -> torch.Tensor:
12
13
14
    index = broadcast(index, src, dim)
    if out is None:
        size = src.size()
rusty1s's avatar
rusty1s committed
15
        if dim_size is not None:
16
            size[dim] = dim_size
rusty1s's avatar
rusty1s committed
17
18
19
20
21
        elif index.numel() == 0:
            size[dim] = 0
        else:
            size[dim] = int(index.max()) + 1
        out = torch.zeros(size, dtype=src.dtype, device=src.device)
22
23
24
        return out.scatter_add_(dim, index, src)
    else:
        return out.scatter_add_(dim, index, src)
rusty1s's avatar
rusty1s committed
25
26
27
28
29
30


@torch.jit.script
def scatter_add(src: torch.Tensor, index: torch.Tensor, dim: int = -1,
                out: Optional[torch.Tensor] = None,
                dim_size: Optional[int] = None) -> torch.Tensor:
31
    return scatter_sum(src, index, dim, out, dim_size)
rusty1s's avatar
rusty1s committed
32
33
34
35
36
37


@torch.jit.script
def scatter_mean(src: torch.Tensor, index: torch.Tensor, dim: int = -1,
                 out: Optional[torch.Tensor] = None,
                 dim_size: Optional[int] = None) -> torch.Tensor:
rusty1s's avatar
rusty1s committed
38
39
40
41
42
43
44

    out = scatter_sum(src, index, dim, out, dim_size)
    dim_size = out.size(dim)

    index_dim = dim
    if index_dim < 0:
        index_dim = index_dim + src.dim()
rusty1s's avatar
rusty1s committed
45
    if index.dim() <= index_dim:
rusty1s's avatar
rusty1s committed
46
47
48
49
50
51
        index_dim = index.dim() - 1

    ones = torch.ones(index.size(), dtype=src.dtype, device=src.device)
    count = scatter_sum(ones, index, index_dim, None, dim_size)
    count.clamp_(1)
    count = broadcast(count, out, dim)
rusty1s's avatar
rusty1s committed
52
53
54
55
    if torch.is_floating_point(out):
        out.true_divide_(count)
    else:
        out.floor_divide_(count)
rusty1s's avatar
rusty1s committed
56
    return out
rusty1s's avatar
rusty1s committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77


@torch.jit.script
def scatter_min(src: torch.Tensor, index: torch.Tensor, dim: int = -1,
                out: Optional[torch.Tensor] = None,
                dim_size: Optional[int] = None
                ) -> Tuple[torch.Tensor, torch.Tensor]:
    return torch.ops.torch_scatter.scatter_min(src, index, dim, out, dim_size)


@torch.jit.script
def scatter_max(src: torch.Tensor, index: torch.Tensor, dim: int = -1,
                out: Optional[torch.Tensor] = None,
                dim_size: Optional[int] = None
                ) -> Tuple[torch.Tensor, torch.Tensor]:
    return torch.ops.torch_scatter.scatter_max(src, index, dim, out, dim_size)


def scatter(src: torch.Tensor, index: torch.Tensor, dim: int = -1,
            out: Optional[torch.Tensor] = None, dim_size: Optional[int] = None,
            reduce: str = "sum") -> torch.Tensor:
rusty1s's avatar
rusty1s committed
78
79
80
81
82
83
84
85
86
87
    r"""
    |

    .. image:: https://raw.githubusercontent.com/rusty1s/pytorch_scatter/
            master/docs/source/_figures/add.svg?sanitize=true
        :align: center
        :width: 400px

    |

rusty1s's avatar
rusty1s committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
    Reduces all values from the :attr:`src` tensor into :attr:`out` at the
    indices specified in the :attr:`index` tensor along a given axis
    :attr:`dim`.
    For each value in :attr:`src`, its output index is specified by its index
    in :attr:`src` for dimensions outside of :attr:`dim` and by the
    corresponding value in :attr:`index` for dimension :attr:`dim`.
    The applied reduction is defined via the :attr:`reduce` argument.

    Formally, if :attr:`src` and :attr:`index` are :math:`n`-dimensional
    tensors with size :math:`(x_0, ..., x_{i-1}, x_i, x_{i+1}, ..., x_{n-1})`
    and :attr:`dim` = `i`, then :attr:`out` must be an :math:`n`-dimensional
    tensor with size :math:`(x_0, ..., x_{i-1}, y, x_{i+1}, ..., x_{n-1})`.
    Moreover, the values of :attr:`index` must be between :math:`0` and
    :math:`y - 1` in ascending order.
    The :attr:`index` tensor supports broadcasting in case its dimensions do
    not match with :attr:`src`.

    For one-dimensional tensors with :obj:`reduce="sum"`, the operation
    computes
rusty1s's avatar
rusty1s committed
107
108

    .. math::
rusty1s's avatar
rusty1s committed
109
        \mathrm{out}_i = \mathrm{out}_i + \sum_j~\mathrm{src}_j
rusty1s's avatar
rusty1s committed
110
111
112
113

    where :math:`\sum_j` is over :math:`j` such that
    :math:`\mathrm{index}_j = i`.

rusty1s's avatar
rusty1s committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
    .. note::

        This operation is implemented via atomic operations on the GPU and is
        therefore **non-deterministic** since the order of parallel operations
        to the same value is undetermined.
        For floating-point variables, this results in a source of variance in
        the result.

    :param src: The source tensor.
    :param index: The indices of elements to scatter.
    :param dim: The axis along which to index. (default: :obj:`-1`)
    :param out: The destination tensor.
    :param dim_size: If :attr:`out` is not given, automatically create output
        with size :attr:`dim_size` at dimension :attr:`dim`.
        If :attr:`dim_size` is not given, a minimal sized output tensor
        according to :obj:`index.max() + 1` is returned.
    :param reduce: The reduce operation (:obj:`"sum"`, :obj:`"mean"`,
        :obj:`"min"` or :obj:`"max"`). (default: :obj:`"sum"`)
rusty1s's avatar
rusty1s committed
132
133
134

    :rtype: :class:`Tensor`

rusty1s's avatar
rusty1s committed
135
    .. code-block:: python
rusty1s's avatar
rusty1s committed
136

rusty1s's avatar
rusty1s committed
137
        from torch_scatter import scatter
rusty1s's avatar
rusty1s committed
138

rusty1s's avatar
rusty1s committed
139
140
        src = torch.randn(10, 6, 64)
        index = torch.tensor([0, 1, 0, 1, 2, 1])
rusty1s's avatar
rusty1s committed
141

rusty1s's avatar
rusty1s committed
142
143
        # Broadcasting in the first and last dim.
        out = scatter(src, index, dim=1, reduce="sum")
rusty1s's avatar
rusty1s committed
144

rusty1s's avatar
rusty1s committed
145
        print(out.size())
rusty1s's avatar
rusty1s committed
146

rusty1s's avatar
rusty1s committed
147
    .. code-block::
rusty1s's avatar
rusty1s committed
148

rusty1s's avatar
rusty1s committed
149
        torch.Size([10, 3, 64])
rusty1s's avatar
rusty1s committed
150
    """
rusty1s's avatar
rusty1s committed
151
152
153
154
155
156
157
158
159
160
    if reduce == 'sum' or reduce == 'add':
        return scatter_sum(src, index, dim, out, dim_size)
    elif reduce == 'mean':
        return scatter_mean(src, index, dim, out, dim_size)
    elif reduce == 'min':
        return scatter_min(src, index, dim, out, dim_size)[0]
    elif reduce == 'max':
        return scatter_max(src, index, dim, out, dim_size)[0]
    else:
        raise ValueError