_disco_convolution.py 8.66 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
# coding=utf-8

# SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

import math

import torch
35
from torch.amp import custom_fwd, custom_bwd
36

Boris Bonev's avatar
Boris Bonev committed
37
38
39
40
41
42
try:
    import disco_cuda_extension
    _cuda_extension_available = True
except ImportError as err:
    disco_cuda_extension = None
    _cuda_extension_available = False
43
44


Boris Bonev's avatar
Boris Bonev committed
45
class _DiscoS2ContractionCuda(torch.autograd.Function):
46
    @staticmethod
Thorsten Kurth's avatar
Thorsten Kurth committed
47
    @custom_fwd(device_type="cuda")
Boris Bonev's avatar
Boris Bonev committed
48
49
50
51
52
53
    def forward(ctx, x: torch.Tensor, roff_idx: torch.Tensor, ker_idx: torch.Tensor,
                row_idx: torch.Tensor, col_idx: torch.Tensor, vals: torch.Tensor,
                kernel_size: int, nlat_out: int, nlon_out: int):
        ctx.save_for_backward(roff_idx, ker_idx, row_idx, col_idx, vals)
        ctx.kernel_size = kernel_size
        ctx.nlat_in = x.shape[-2]
54
        ctx.nlon_in = x.shape[-1]
Thorsten Kurth's avatar
Thorsten Kurth committed
55
56
57
58
        xtype = x.dtype
        x = x.to(torch.float32).contiguous()
        output = disco_cuda_extension.forward(x, roff_idx, ker_idx, row_idx, col_idx, vals, kernel_size, nlat_out, nlon_out)
        output = output.to(xtype)
59

60
        return output
61
62

    @staticmethod
63
    @custom_bwd(device_type="cuda")
64
    def backward(ctx, grad_output):
Boris Bonev's avatar
Boris Bonev committed
65
        roff_idx, ker_idx, row_idx, col_idx, vals = ctx.saved_tensors
Thorsten Kurth's avatar
Thorsten Kurth committed
66
67
68
        gtype =	grad_output.dtype
        grad_output = grad_output.to(torch.float32).contiguous()
        grad_input = disco_cuda_extension.backward(grad_output, roff_idx, ker_idx, row_idx, col_idx, vals,
Boris Bonev's avatar
Boris Bonev committed
69
                                         ctx.kernel_size, ctx.nlat_in, ctx.nlon_in)
Thorsten Kurth's avatar
Thorsten Kurth committed
70
        grad_input = grad_input.to(gtype)
71

Boris Bonev's avatar
Boris Bonev committed
72
        return grad_input, None, None, None, None, None, None, None, None
73

Boris Bonev's avatar
Boris Bonev committed
74
75

class _DiscoS2TransposeContractionCuda(torch.autograd.Function):
76
    @staticmethod
Thorsten Kurth's avatar
Thorsten Kurth committed
77
    @custom_fwd(device_type="cuda")
Boris Bonev's avatar
Boris Bonev committed
78
79
80
81
82
83
    def forward(ctx, x: torch.Tensor, roff_idx: torch.Tensor, ker_idx: torch.Tensor,
                row_idx: torch.Tensor, col_idx: torch.Tensor, vals: torch.Tensor,
                kernel_size: int, nlat_out: int, nlon_out: int):
        ctx.save_for_backward(roff_idx, ker_idx, row_idx, col_idx, vals)
        ctx.kernel_size = kernel_size
        ctx.nlat_in = x.shape[-2]
84
        ctx.nlon_in = x.shape[-1]
Thorsten Kurth's avatar
Thorsten Kurth committed
85
86
87
88
        xtype =	x.dtype
        x = x.to(torch.float32).contiguous()
        output = disco_cuda_extension.backward(x, roff_idx, ker_idx, row_idx, col_idx, vals, kernel_size, nlat_out, nlon_out)
        output = output.to(xtype)
89

90
        return output
91
92

    @staticmethod
93
    @custom_bwd(device_type="cuda")
94
    def backward(ctx, grad_output):
Boris Bonev's avatar
Boris Bonev committed
95
        roff_idx, ker_idx, row_idx, col_idx, vals = ctx.saved_tensors
Thorsten Kurth's avatar
Thorsten Kurth committed
96
97
98
        gtype = grad_output.dtype
        grad_output = grad_output.to(torch.float32).contiguous()
        grad_input = disco_cuda_extension.forward(grad_output, roff_idx, ker_idx, row_idx, col_idx, vals,
Boris Bonev's avatar
Boris Bonev committed
99
                                        ctx.kernel_size, ctx.nlat_in, ctx.nlon_in)
Thorsten Kurth's avatar
Thorsten Kurth committed
100
        grad_input = grad_input.to(gtype)
101

Boris Bonev's avatar
Boris Bonev committed
102
        return grad_input, None, None, None, None, None, None, None, None
103

Boris Bonev's avatar
Boris Bonev committed
104
105
106
107
108
109
# CUDA
def _disco_s2_contraction_cuda(x: torch.Tensor, roff_idx: torch.Tensor, ker_idx: torch.Tensor,
                               row_idx: torch.Tensor, col_idx: torch.Tensor, vals: torch.Tensor,
                               kernel_size: int, nlat_out: int, nlon_out: int) -> torch.Tensor:
    return _DiscoS2ContractionCuda.apply(x, roff_idx, ker_idx, row_idx, col_idx, vals,
                                         kernel_size, nlat_out, nlon_out)
110

Boris Bonev's avatar
Boris Bonev committed
111
112
113
114
115
def _disco_s2_transpose_contraction_cuda(x: torch.Tensor, roff_idx: torch.Tensor, ker_idx: torch.Tensor,
                                         row_idx: torch.Tensor, col_idx: torch.Tensor, vals: torch.Tensor,
                                         kernel_size: int, nlat_out: int, nlon_out: int) -> torch.Tensor:
    return _DiscoS2TransposeContractionCuda.apply(x, roff_idx, ker_idx, row_idx, col_idx, vals,
                                                  kernel_size, nlat_out, nlon_out)
116
117
118
119
120
121


def _disco_s2_contraction_torch(x: torch.Tensor, psi: torch.Tensor, nlon_out: int):
    """
    Reference implementation of the custom contraction as described in [1]. This requires repeated
    shifting of the input tensor, which can potentially be costly. For an efficient implementation
Boris Bonev's avatar
Boris Bonev committed
122
    on GPU, make sure to use the custom kernel written in CUDA.
123
124
125
126
127
128
129
130
131
132
    """
    assert len(psi.shape) == 3
    assert len(x.shape) == 4
    psi = psi.to(x.device)

    batch_size, n_chans, nlat_in, nlon_in = x.shape
    kernel_size, nlat_out, _ = psi.shape

    assert psi.shape[-1] == nlat_in * nlon_in
    assert nlon_in % nlon_out == 0
Boris Bonev's avatar
Boris Bonev committed
133
    assert nlon_in >= nlat_out
134
135
    pscale = nlon_in // nlon_out

136
    # add a dummy dimension for nkernel and move the batch and channel dims to the end
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
    x = x.reshape(1, batch_size * n_chans, nlat_in, nlon_in).permute(0, 2, 3, 1)
    x = x.expand(kernel_size, -1, -1, -1)

    y = torch.zeros(nlon_out, kernel_size, nlat_out, batch_size * n_chans, device=x.device, dtype=x.dtype)

    for pout in range(nlon_out):
        # sparse contraction with psi
        y[pout] = torch.bmm(psi, x.reshape(kernel_size, nlat_in * nlon_in, -1))
        # we need to repeatedly roll the input tensor to faciliate the shifted multiplication
        x = torch.roll(x, -pscale, dims=2)

    # reshape y back to expose the correct dimensions
    y = y.permute(3, 1, 2, 0).reshape(batch_size, n_chans, kernel_size, nlat_out, nlon_out)

    return y


def _disco_s2_transpose_contraction_torch(x: torch.Tensor, psi: torch.Tensor, nlon_out: int):
    """
    Reference implementation of the custom contraction as described in [1]. This requires repeated
    shifting of the input tensor, which can potentially be costly. For an efficient implementation
Boris Bonev's avatar
Boris Bonev committed
158
    on GPU, make sure to use the custom kernel written in CUDA.
159
160
161
162
163
164
    """
    assert len(psi.shape) == 3
    assert len(x.shape) == 5
    psi = psi.to(x.device)

    batch_size, n_chans, kernel_size, nlat_in, nlon_in = x.shape
165
    kernel_size, nlat_out, n_out = psi.shape
166
167

    assert n_out % nlon_out == 0
Boris Bonev's avatar
Boris Bonev committed
168
    assert nlon_out >= nlon_in
169
170
171
172
    pscale = nlon_out // nlon_in

    # interleave zeros along the longitude dimension to allow for fractional offsets to be considered
    x_ext = torch.zeros(kernel_size, nlat_in, nlon_out, batch_size * n_chans, device=x.device, dtype=x.dtype)
173
    x = x.reshape(batch_size * n_chans, kernel_size, nlat_in, nlon_in).permute(1, 2, 3, 0)
Boris Bonev's avatar
Boris Bonev committed
174

175
176
177
    # x has shape kernel_size x nlat_in x nlon_in x batch_size * n_chans
    # we only need to apoply the nlon stride here, since nlat stride is taken care of by the kernel
    x_ext[:, :, ::pscale, :] = x[...]
178

179
    # create output tensor
180
181
182
183
184
185
186
    y = torch.zeros(kernel_size, nlon_out, nlat_out, batch_size * n_chans, device=x.device, dtype=x.dtype)

    for pout in range(nlon_out):
        # we need to repeatedly roll the input tensor to faciliate the shifted multiplication
        # TODO: double-check why this has to happen first
        x_ext = torch.roll(x_ext, -1, dims=2)
        # sparse contraction with the modified psi
187
        y[:, pout, :, :] = torch.bmm(psi, x_ext.reshape(kernel_size, nlat_in * nlon_out, -1))
188
189

    # sum over the kernel dimension and reshape to the correct output size
190
    y = y.sum(dim=0).permute(2, 1, 0).reshape(batch_size, n_chans, nlat_out, nlon_out).contiguous()
191
192
193

    return y