"scripts/stat_utils/cal_ppl.py" did not exist on "2778a3d0a3084bbd3accca5fdd61b2eff3d2734d"
_disco_convolution.py 8.29 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
# coding=utf-8

# SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

import math

import torch
35
from torch.amp import custom_fwd, custom_bwd
36

Boris Bonev's avatar
Boris Bonev committed
37
38
39
40
41
42
try:
    import disco_cuda_extension
    _cuda_extension_available = True
except ImportError as err:
    disco_cuda_extension = None
    _cuda_extension_available = False
43
44


Boris Bonev's avatar
Boris Bonev committed
45
class _DiscoS2ContractionCuda(torch.autograd.Function):
46
    @staticmethod
47
    @custom_fwd(device_type="cuda", cast_inputs=torch.float32)
Boris Bonev's avatar
Boris Bonev committed
48
49
50
51
52
53
    def forward(ctx, x: torch.Tensor, roff_idx: torch.Tensor, ker_idx: torch.Tensor,
                row_idx: torch.Tensor, col_idx: torch.Tensor, vals: torch.Tensor,
                kernel_size: int, nlat_out: int, nlon_out: int):
        ctx.save_for_backward(roff_idx, ker_idx, row_idx, col_idx, vals)
        ctx.kernel_size = kernel_size
        ctx.nlat_in = x.shape[-2]
54
        ctx.nlon_in = x.shape[-1]
55
        output = disco_cuda_extension.forward(x.contiguous(), roff_idx, ker_idx, row_idx, col_idx, vals, kernel_size, nlat_out, nlon_out)
56

57
        return output
58
59

    @staticmethod
60
    @custom_bwd(device_type="cuda")
61
    def backward(ctx, grad_output):
Boris Bonev's avatar
Boris Bonev committed
62
63
64
        roff_idx, ker_idx, row_idx, col_idx, vals = ctx.saved_tensors
        grad_input = disco_cuda_extension.backward(grad_output.contiguous(), roff_idx, ker_idx, row_idx, col_idx, vals,
                                         ctx.kernel_size, ctx.nlat_in, ctx.nlon_in)
65

Boris Bonev's avatar
Boris Bonev committed
66
        return grad_input, None, None, None, None, None, None, None, None
67

Boris Bonev's avatar
Boris Bonev committed
68
69

class _DiscoS2TransposeContractionCuda(torch.autograd.Function):
70
    @staticmethod
71
    @custom_fwd(device_type="cuda", cast_inputs=torch.float32)
Boris Bonev's avatar
Boris Bonev committed
72
73
74
75
76
77
    def forward(ctx, x: torch.Tensor, roff_idx: torch.Tensor, ker_idx: torch.Tensor,
                row_idx: torch.Tensor, col_idx: torch.Tensor, vals: torch.Tensor,
                kernel_size: int, nlat_out: int, nlon_out: int):
        ctx.save_for_backward(roff_idx, ker_idx, row_idx, col_idx, vals)
        ctx.kernel_size = kernel_size
        ctx.nlat_in = x.shape[-2]
78
        ctx.nlon_in = x.shape[-1]
79
        output = disco_cuda_extension.backward(x.contiguous(), roff_idx, ker_idx, row_idx, col_idx, vals, kernel_size, nlat_out, nlon_out)
80

81
        return output
82
83

    @staticmethod
84
    @custom_bwd(device_type="cuda")
85
    def backward(ctx, grad_output):
Boris Bonev's avatar
Boris Bonev committed
86
87
88
        roff_idx, ker_idx, row_idx, col_idx, vals = ctx.saved_tensors
        grad_input = disco_cuda_extension.forward(grad_output.contiguous(), roff_idx, ker_idx, row_idx, col_idx, vals,
                                        ctx.kernel_size, ctx.nlat_in, ctx.nlon_in)
89

Boris Bonev's avatar
Boris Bonev committed
90
        return grad_input, None, None, None, None, None, None, None, None
91

Boris Bonev's avatar
Boris Bonev committed
92
93
94
95
96
97
# CUDA
def _disco_s2_contraction_cuda(x: torch.Tensor, roff_idx: torch.Tensor, ker_idx: torch.Tensor,
                               row_idx: torch.Tensor, col_idx: torch.Tensor, vals: torch.Tensor,
                               kernel_size: int, nlat_out: int, nlon_out: int) -> torch.Tensor:
    return _DiscoS2ContractionCuda.apply(x, roff_idx, ker_idx, row_idx, col_idx, vals,
                                         kernel_size, nlat_out, nlon_out)
98

Boris Bonev's avatar
Boris Bonev committed
99
100
101
102
103
def _disco_s2_transpose_contraction_cuda(x: torch.Tensor, roff_idx: torch.Tensor, ker_idx: torch.Tensor,
                                         row_idx: torch.Tensor, col_idx: torch.Tensor, vals: torch.Tensor,
                                         kernel_size: int, nlat_out: int, nlon_out: int) -> torch.Tensor:
    return _DiscoS2TransposeContractionCuda.apply(x, roff_idx, ker_idx, row_idx, col_idx, vals,
                                                  kernel_size, nlat_out, nlon_out)
104
105
106
107
108
109


def _disco_s2_contraction_torch(x: torch.Tensor, psi: torch.Tensor, nlon_out: int):
    """
    Reference implementation of the custom contraction as described in [1]. This requires repeated
    shifting of the input tensor, which can potentially be costly. For an efficient implementation
Boris Bonev's avatar
Boris Bonev committed
110
    on GPU, make sure to use the custom kernel written in CUDA.
111
112
113
114
115
116
117
118
119
120
    """
    assert len(psi.shape) == 3
    assert len(x.shape) == 4
    psi = psi.to(x.device)

    batch_size, n_chans, nlat_in, nlon_in = x.shape
    kernel_size, nlat_out, _ = psi.shape

    assert psi.shape[-1] == nlat_in * nlon_in
    assert nlon_in % nlon_out == 0
Boris Bonev's avatar
Boris Bonev committed
121
    assert nlon_in >= nlat_out
122
123
    pscale = nlon_in // nlon_out

124
    # add a dummy dimension for nkernel and move the batch and channel dims to the end
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
    x = x.reshape(1, batch_size * n_chans, nlat_in, nlon_in).permute(0, 2, 3, 1)
    x = x.expand(kernel_size, -1, -1, -1)

    y = torch.zeros(nlon_out, kernel_size, nlat_out, batch_size * n_chans, device=x.device, dtype=x.dtype)

    for pout in range(nlon_out):
        # sparse contraction with psi
        y[pout] = torch.bmm(psi, x.reshape(kernel_size, nlat_in * nlon_in, -1))
        # we need to repeatedly roll the input tensor to faciliate the shifted multiplication
        x = torch.roll(x, -pscale, dims=2)

    # reshape y back to expose the correct dimensions
    y = y.permute(3, 1, 2, 0).reshape(batch_size, n_chans, kernel_size, nlat_out, nlon_out)

    return y


def _disco_s2_transpose_contraction_torch(x: torch.Tensor, psi: torch.Tensor, nlon_out: int):
    """
    Reference implementation of the custom contraction as described in [1]. This requires repeated
    shifting of the input tensor, which can potentially be costly. For an efficient implementation
Boris Bonev's avatar
Boris Bonev committed
146
    on GPU, make sure to use the custom kernel written in CUDA.
147
148
149
150
151
152
    """
    assert len(psi.shape) == 3
    assert len(x.shape) == 5
    psi = psi.to(x.device)

    batch_size, n_chans, kernel_size, nlat_in, nlon_in = x.shape
153
    kernel_size, nlat_out, n_out = psi.shape
154
155

    assert n_out % nlon_out == 0
Boris Bonev's avatar
Boris Bonev committed
156
    assert nlon_out >= nlon_in
157
158
159
160
    pscale = nlon_out // nlon_in

    # interleave zeros along the longitude dimension to allow for fractional offsets to be considered
    x_ext = torch.zeros(kernel_size, nlat_in, nlon_out, batch_size * n_chans, device=x.device, dtype=x.dtype)
161
    x = x.reshape(batch_size * n_chans, kernel_size, nlat_in, nlon_in).permute(1, 2, 3, 0)
Boris Bonev's avatar
Boris Bonev committed
162

163
164
165
    # x has shape kernel_size x nlat_in x nlon_in x batch_size * n_chans
    # we only need to apoply the nlon stride here, since nlat stride is taken care of by the kernel
    x_ext[:, :, ::pscale, :] = x[...]
166

167
    # create output tensor
168
169
170
171
172
173
174
    y = torch.zeros(kernel_size, nlon_out, nlat_out, batch_size * n_chans, device=x.device, dtype=x.dtype)

    for pout in range(nlon_out):
        # we need to repeatedly roll the input tensor to faciliate the shifted multiplication
        # TODO: double-check why this has to happen first
        x_ext = torch.roll(x_ext, -1, dims=2)
        # sparse contraction with the modified psi
175
        y[:, pout, :, :] = torch.bmm(psi, x_ext.reshape(kernel_size, nlat_in * nlon_out, -1))
176
177

    # sum over the kernel dimension and reshape to the correct output size
178
    y = y.sum(dim=0).permute(2, 1, 0).reshape(batch_size, n_chans, nlat_out, nlon_out).contiguous()
179
180
181

    return y