distributed_sht.py 24.4 KB
Newer Older
Boris Bonev's avatar
Boris Bonev committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# coding=utf-8

# SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

import os
import torch
import torch.nn as nn
import torch.fft
import torch.nn.functional as F

38
39
from torch_harmonics.quadrature import legendre_gauss_weights, lobatto_weights, clenshaw_curtiss_weights
from torch_harmonics.legendre import _precompute_legpoly, _precompute_dlegpoly
Boris Bonev's avatar
Boris Bonev committed
40
41
from torch_harmonics.distributed import polar_group_size, azimuth_group_size, distributed_transpose_azimuth, distributed_transpose_polar
from torch_harmonics.distributed import polar_group_rank, azimuth_group_rank
42
from torch_harmonics.distributed import compute_split_shapes, split_tensor_along_dim
Boris Bonev's avatar
Boris Bonev committed
43
44
45
46
47
48
49
50


class DistributedRealSHT(nn.Module):
    """
    Defines a module for computing the forward (real-valued) SHT.
    Precomputes Legendre Gauss nodes, weights and associated Legendre polynomials on these nodes.
    The SHT is applied to the last two dimensions of the input

apaaris's avatar
apaaris committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
    Parameters
    ----------
    nlat: int
        Number of latitude points
    nlon: int
        Number of longitude points
    lmax: int
        Maximum spherical harmonic degree
    mmax: int
        Maximum spherical harmonic order
    grid: str
        Grid type ("equiangular", "legendre-gauss", "lobatto", "equidistant"), by default "equiangular"
    norm: str
        Normalization type ("ortho", "schmidt", "unnorm"), by default "ortho"
    csphase: bool
        Whether to apply the Condon-Shortley phase factor, by default True

    Returns
    -------
    x: torch.Tensor
        Tensor of shape (..., lmax, mmax)

    References
    ----------
Boris Bonev's avatar
Boris Bonev committed
75
76
77
78
    [1] Schaeffer, N. Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations, G3: Geochemistry, Geophysics, Geosystems.
    [2] Wang, B., Wang, L., Xie, Z.; Accurate calculation of spherical and vector spherical harmonic expansions via spectral element grids; Adv Comput Math.
    """

79
    def __init__(self, nlat, nlon, lmax=None, mmax=None, grid="equiangular", norm="ortho", csphase=True):
80
        
Boris Bonev's avatar
Boris Bonev committed
81
82
83
84
85
86
87
88
89
90
91
92
        super().__init__()

        self.nlat = nlat
        self.nlon = nlon
        self.grid = grid
        self.norm = norm
        self.csphase = csphase

        # TODO: include assertions regarding the dimensions

        # compute quadrature points
        if self.grid == "legendre-gauss":
Thorsten Kurth's avatar
Thorsten Kurth committed
93
            cost, weights = legendre_gauss_weights(nlat, -1, 1)
Boris Bonev's avatar
Boris Bonev committed
94
95
            self.lmax = lmax or self.nlat
        elif self.grid == "lobatto":
Thorsten Kurth's avatar
Thorsten Kurth committed
96
            cost, weights = lobatto_weights(nlat, -1, 1)
Boris Bonev's avatar
Boris Bonev committed
97
98
            self.lmax = lmax or self.nlat-1
        elif self.grid == "equiangular":
Thorsten Kurth's avatar
Thorsten Kurth committed
99
            cost, weights = clenshaw_curtiss_weights(nlat, -1, 1)
Boris Bonev's avatar
Boris Bonev committed
100
101
102
103
104
105
106
107
108
109
110
111
            # cost, w = fejer2_weights(nlat, -1, 1)
            self.lmax = lmax or self.nlat
        else:
            raise(ValueError("Unknown quadrature mode"))

        # get the comms grid:
        self.comm_size_polar = polar_group_size()
        self.comm_rank_polar = polar_group_rank()
        self.comm_size_azimuth = azimuth_group_size()
        self.comm_rank_azimuth = azimuth_group_rank()

        # apply cosine transform and flip them
Thorsten Kurth's avatar
Thorsten Kurth committed
112
        tq = torch.flip(torch.arccos(cost), dims=(0,))
Boris Bonev's avatar
Boris Bonev committed
113
114
115
116

        # determine the dimensions
        self.mmax = mmax or self.nlon // 2 + 1

117
118
119
120
121
        # compute splits
        self.lat_shapes = compute_split_shapes(self.nlat, self.comm_size_polar)
        self.lon_shapes = compute_split_shapes(self.nlon, self.comm_size_azimuth)
        self.l_shapes = compute_split_shapes(self.lmax, self.comm_size_polar)
        self.m_shapes = compute_split_shapes(self.mmax, self.comm_size_azimuth)
Boris Bonev's avatar
Boris Bonev committed
122
123

        # combine quadrature weights with the legendre weights
124
        pct = _precompute_legpoly(self.mmax, self.lmax, tq, norm=self.norm, csphase=self.csphase)
Boris Bonev's avatar
Boris Bonev committed
125
        weights = torch.einsum('mlk,k->mlk', pct, weights)
126

127
        # split weights
Thorsten Kurth's avatar
Thorsten Kurth committed
128
        weights = split_tensor_along_dim(weights, dim=0, num_chunks=self.comm_size_azimuth)[self.comm_rank_azimuth].contiguous()
Boris Bonev's avatar
Boris Bonev committed
129
130
131
132
133
134
135
136
137

        # remember quadrature weights
        self.register_buffer('weights', weights, persistent=False)

    def extra_repr(self):
        return f'nlat={self.nlat}, nlon={self.nlon},\n lmax={self.lmax}, mmax={self.mmax},\n grid={self.grid}, csphase={self.csphase}'

    def forward(self, x: torch.Tensor):

138
139
140
        if x.dim() < 3:
            raise ValueError(f"Expected tensor with at least 3 dimensions but got {x.dim()} instead")

Boris Bonev's avatar
Boris Bonev committed
141
        # we need to ensure that we can split the channels evenly
142
143
        num_chans = x.shape[-3]

Boris Bonev's avatar
Boris Bonev committed
144
145
        # h and w is split. First we make w local by transposing into channel dim
        if self.comm_size_azimuth > 1:
146
            x = distributed_transpose_azimuth.apply(x, (-3, -1), self.lon_shapes)
Boris Bonev's avatar
Boris Bonev committed
147
148

        # apply real fft in the longitudinal direction: make sure to truncate to nlon
149
        x = 2.0 * torch.pi * torch.fft.rfft(x, n=self.nlon, dim=-1, norm="forward")
Boris Bonev's avatar
Boris Bonev committed
150
151

        # truncate
152
        x = x[..., :self.mmax]
Boris Bonev's avatar
Boris Bonev committed
153
154
155

        # transpose: after this, m is split and c is local
        if self.comm_size_azimuth > 1:
156
            chan_shapes = compute_split_shapes(num_chans, self.comm_size_azimuth)
157
            x = distributed_transpose_azimuth.apply(x, (-1, -3), chan_shapes)
Boris Bonev's avatar
Boris Bonev committed
158
159
160

        # transpose: after this, c is split and h is local
        if self.comm_size_polar > 1:
161
            x = distributed_transpose_polar.apply(x, (-3, -2), self.lat_shapes)
Boris Bonev's avatar
Boris Bonev committed
162
163

        # do the Legendre-Gauss quadrature
164
        x = torch.view_as_real(x)
Boris Bonev's avatar
Boris Bonev committed
165
166

        # contraction
167
        xs = torch.einsum('...kmr,mlk->...lmr', x, self.weights.to(x.dtype)).contiguous()
Boris Bonev's avatar
Boris Bonev committed
168

169
170
        # cast to complex
        x = torch.view_as_complex(xs)
Boris Bonev's avatar
Boris Bonev committed
171
172
173

        # transpose: after this, l is split and c is local
        if self.comm_size_polar	> 1:
174
            chan_shapes = compute_split_shapes(num_chans, self.comm_size_polar)
175
176
            x = distributed_transpose_polar.apply(x, (-2, -3), chan_shapes)

177
        return x
Boris Bonev's avatar
Boris Bonev committed
178
179
180
181
182
183
184


class DistributedInverseRealSHT(nn.Module):
    """
    Defines a module for computing the inverse (real-valued) SHT.
    Precomputes Legendre Gauss nodes, weights and associated Legendre polynomials on these nodes.

apaaris's avatar
apaaris committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
    Parameters
    ----------
    nlat: int
        Number of latitude points
    nlon: int
        Number of longitude points
    lmax: int
        Maximum spherical harmonic degree
    mmax: int
        Maximum spherical harmonic order
    grid: str
        Grid type ("equiangular", "legendre-gauss", "lobatto", "equidistant"), by default "equiangular"
    norm: str
        Normalization type ("ortho", "schmidt", "unnorm"), by default "ortho"
    csphase: bool
        Whether to apply the Condon-Shortley phase factor, by default True

    Returns
    -------
    x: torch.Tensor
        Tensor of shape (..., lmax, mmax)

    References
    ----------
Boris Bonev's avatar
Boris Bonev committed
209
210
211
212
    [1] Schaeffer, N. Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations, G3: Geochemistry, Geophysics, Geosystems.
    [2] Wang, B., Wang, L., Xie, Z.; Accurate calculation of spherical and vector spherical harmonic expansions via spectral element grids; Adv Comput Math.
    """

213
    def __init__(self, nlat, nlon, lmax=None, mmax=None, grid="equiangular", norm="ortho", csphase=True):
Boris Bonev's avatar
Boris Bonev committed
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

        super().__init__()

        self.nlat = nlat
        self.nlon = nlon
        self.grid = grid
        self.norm = norm
        self.csphase = csphase

        # compute quadrature points
        if self.grid == "legendre-gauss":
            cost, _ = legendre_gauss_weights(nlat, -1, 1)
            self.lmax = lmax or self.nlat
        elif self.grid == "lobatto":
            cost, _ = lobatto_weights(nlat, -1, 1)
            self.lmax = lmax or self.nlat-1
        elif self.grid == "equiangular":
            cost, _ = clenshaw_curtiss_weights(nlat, -1, 1)
            self.lmax = lmax or self.nlat
        else:
            raise(ValueError("Unknown quadrature mode"))

        # get the comms grid:
        self.comm_size_polar = polar_group_size()
        self.comm_rank_polar = polar_group_rank()
        self.comm_size_azimuth = azimuth_group_size()
        self.comm_rank_azimuth = azimuth_group_rank()

        # apply cosine transform and flip them
Thorsten Kurth's avatar
Thorsten Kurth committed
243
        t = torch.flip(torch.arccos(cost), dims=(0,))
Boris Bonev's avatar
Boris Bonev committed
244
245
246
247

        # determine the dimensions
        self.mmax = mmax or self.nlon // 2 + 1

248
        # compute splits
249
250
251
252
        self.lat_shapes = compute_split_shapes(self.nlat, self.comm_size_polar)
        self.lon_shapes = compute_split_shapes(self.nlon, self.comm_size_azimuth)
        self.l_shapes = compute_split_shapes(self.lmax, self.comm_size_polar)
        self.m_shapes = compute_split_shapes(self.mmax, self.comm_size_azimuth)
Boris Bonev's avatar
Boris Bonev committed
253
254

        # compute legende polynomials
255
        pct = _precompute_legpoly(self.mmax, self.lmax, t, norm=self.norm, inverse=True, csphase=self.csphase)
Boris Bonev's avatar
Boris Bonev committed
256
257

        # split in m
Thorsten Kurth's avatar
Thorsten Kurth committed
258
        pct = split_tensor_along_dim(pct, dim=0, num_chunks=self.comm_size_azimuth)[self.comm_rank_azimuth].contiguous()
Boris Bonev's avatar
Boris Bonev committed
259
260
261
262
263
264
265
266
267

        # register
        self.register_buffer('pct', pct, persistent=False)

    def extra_repr(self):
        return f'nlat={self.nlat}, nlon={self.nlon},\n lmax={self.lmax}, mmax={self.mmax},\n grid={self.grid}, csphase={self.csphase}'

    def forward(self, x: torch.Tensor):

268
269
270
        if x.dim() < 3:
            raise ValueError(f"Expected tensor with at least 3 dimensions but got {x.dim()} instead")

Boris Bonev's avatar
Boris Bonev committed
271
        # we need to ensure that we can split the channels evenly
272
        num_chans = x.shape[-3]
Boris Bonev's avatar
Boris Bonev committed
273
274
275

        # transpose: after that, channels are split, l is local:
        if self.comm_size_polar > 1:
276
            x = distributed_transpose_polar.apply(x, (-3, -2), self.l_shapes)
Boris Bonev's avatar
Boris Bonev committed
277
278

        # Evaluate associated Legendre functions on the output nodes
279
        x = torch.view_as_real(x)
Boris Bonev's avatar
Boris Bonev committed
280
281

        # einsum
282
        xs = torch.einsum('...lmr, mlk->...kmr', x, self.pct.to(x.dtype)).contiguous()
Boris Bonev's avatar
Boris Bonev committed
283

284
285
        # inverse FFT
        x = torch.view_as_complex(xs)
Boris Bonev's avatar
Boris Bonev committed
286
287

        if self.comm_size_polar > 1:
288
            chan_shapes = compute_split_shapes(num_chans, self.comm_size_polar)
289
            x = distributed_transpose_polar.apply(x, (-2, -3), chan_shapes)
Boris Bonev's avatar
Boris Bonev committed
290
291
292

        # transpose: after this, channels are split and m is local
        if self.comm_size_azimuth > 1:
293
            x = distributed_transpose_azimuth.apply(x, (-3, -1), self.m_shapes)
Boris Bonev's avatar
Boris Bonev committed
294

295
296
297
298
299
        # set DCT and nyquist frequencies to 0:
        x[..., 0].imag = 0.0
        if (self.nlon % 2 == 0) and (self.nlon // 2 < x.shape[-1]):
            x[..., self.nlon // 2].imag = 0.0
            
Boris Bonev's avatar
Boris Bonev committed
300
        # apply the inverse (real) FFT
301
        x = torch.fft.irfft(x, n=self.nlon, dim=-1, norm="forward")
Boris Bonev's avatar
Boris Bonev committed
302
303
304

        # transpose: after this, m is split and channels are local
        if self.comm_size_azimuth > 1:
305
            chan_shapes = compute_split_shapes(num_chans, self.comm_size_azimuth)
306
            x = distributed_transpose_azimuth.apply(x, (-1, -3), chan_shapes)
Boris Bonev's avatar
Boris Bonev committed
307

308
        return x
Boris Bonev's avatar
Boris Bonev committed
309
310
311
312
313
314
315
316


class DistributedRealVectorSHT(nn.Module):
    """
    Defines a module for computing the forward (real) vector SHT.
    Precomputes Legendre Gauss nodes, weights and associated Legendre polynomials on these nodes.
    The SHT is applied to the last three dimensions of the input.

apaaris's avatar
apaaris committed
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
    Parameters
    ----------
    nlat: int
        Number of latitude points
    nlon: int
        Number of longitude points  
    lmax: int
        Maximum spherical harmonic degree
    mmax: int
        Maximum spherical harmonic order
    grid: str
        Grid type ("equiangular", "legendre-gauss", "lobatto", "equidistant"), by default "equiangular"
    norm: str
        Normalization type ("ortho", "schmidt", "unnorm"), by default "ortho"
    csphase: bool
        Whether to apply the Condon-Shortley phase factor, by default True

    Returns
    -------
    x: torch.Tensor
        Tensor of shape (..., lmax, mmax)

    References
    ----------
Boris Bonev's avatar
Boris Bonev committed
341
342
343
344
    [1] Schaeffer, N. Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations, G3: Geochemistry, Geophysics, Geosystems.
    [2] Wang, B., Wang, L., Xie, Z.; Accurate calculation of spherical and vector spherical harmonic expansions via spectral element grids; Adv Comput Math.
    """

345
    def __init__(self, nlat, nlon, lmax=None, mmax=None, grid="equiangular", norm="ortho", csphase=True):
Boris Bonev's avatar
Boris Bonev committed
346
347
348
349
350
351
352
353
354
355
356

        super().__init__()

        self.nlat = nlat
        self.nlon = nlon
        self.grid = grid
        self.norm = norm
        self.csphase = csphase

        # compute quadrature points
        if self.grid == "legendre-gauss":
Thorsten Kurth's avatar
Thorsten Kurth committed
357
            cost, weights = legendre_gauss_weights(nlat, -1, 1)
Boris Bonev's avatar
Boris Bonev committed
358
359
            self.lmax = lmax or self.nlat
        elif self.grid == "lobatto":
Thorsten Kurth's avatar
Thorsten Kurth committed
360
            cost, weights = lobatto_weights(nlat, -1, 1)
Boris Bonev's avatar
Boris Bonev committed
361
362
            self.lmax = lmax or self.nlat-1
        elif self.grid == "equiangular":
Thorsten Kurth's avatar
Thorsten Kurth committed
363
            cost, weights = clenshaw_curtiss_weights(nlat, -1, 1)
Boris Bonev's avatar
Boris Bonev committed
364
365
366
367
368
369
370
371
372
373
374
375
            # cost, w = fejer2_weights(nlat, -1, 1)
            self.lmax = lmax or self.nlat
        else:
            raise(ValueError("Unknown quadrature mode"))

        # get the comms grid:
        self.comm_size_polar = polar_group_size()
        self.comm_rank_polar = polar_group_rank()
        self.comm_size_azimuth = azimuth_group_size()
        self.comm_rank_azimuth = azimuth_group_rank()

        # apply cosine transform and flip them
Thorsten Kurth's avatar
Thorsten Kurth committed
376
        tq = torch.flip(torch.arccos(cost), dims=(0,))
Boris Bonev's avatar
Boris Bonev committed
377
378
379
380

        # determine the dimensions
        self.mmax = mmax or self.nlon // 2 + 1

381
382
383
384
385
        # compute splits
        self.lat_shapes = compute_split_shapes(self.nlat, self.comm_size_polar)
        self.lon_shapes = compute_split_shapes(self.nlon, self.comm_size_azimuth)
        self.l_shapes = compute_split_shapes(self.lmax, self.comm_size_polar)
        self.m_shapes = compute_split_shapes(self.mmax, self.comm_size_azimuth)
Boris Bonev's avatar
Boris Bonev committed
386

387
        # compute weights
388
        dpct = _precompute_dlegpoly(self.mmax, self.lmax, tq, norm=self.norm, csphase=self.csphase)
Boris Bonev's avatar
Boris Bonev committed
389
390
391
392
393
394
395
396
397
398

        # combine integration weights, normalization factor in to one:
        l = torch.arange(0, self.lmax)
        norm_factor = 1. / l / (l+1)
        norm_factor[0] = 1.
        weights = torch.einsum('dmlk,k,l->dmlk', dpct, weights, norm_factor)
        # since the second component is imaginary, we need to take complex conjugation into account
        weights[1] = -1 * weights[1]

        # we need to split in m, pad before:
Thorsten Kurth's avatar
Thorsten Kurth committed
399
        weights = split_tensor_along_dim(weights, dim=1, num_chunks=self.comm_size_azimuth)[self.comm_rank_azimuth].contiguous()
Boris Bonev's avatar
Boris Bonev committed
400
401
402
403

        # remember quadrature weights
        self.register_buffer('weights', weights, persistent=False)

404

Boris Bonev's avatar
Boris Bonev committed
405
406
407
408
409
    def extra_repr(self):
        return f'nlat={self.nlat}, nlon={self.nlon},\n lmax={self.lmax}, mmax={self.mmax},\n grid={self.grid}, csphase={self.csphase}'

    def forward(self, x: torch.Tensor):

410
411
412
        if x.dim() < 4:
            raise ValueError(f"Expected tensor with at least 4 dimensions but got {x.dim()} instead")

413
        # we need to ensure that we can split the channels evenly
414
        num_chans = x.shape[-4]
Boris Bonev's avatar
Boris Bonev committed
415
416
417

        # h and w is split. First we make w local by transposing into channel dim
        if self.comm_size_azimuth > 1:
418
            x = distributed_transpose_azimuth.apply(x, (-4, -1), self.lon_shapes)
Boris Bonev's avatar
Boris Bonev committed
419
420

        # apply real fft in the longitudinal direction: make sure to truncate to nlon
421
        x = 2.0 * torch.pi * torch.fft.rfft(x, n=self.nlon, dim=-1, norm="forward")
Boris Bonev's avatar
Boris Bonev committed
422
423

        # truncate
424
        x = x[..., :self.mmax]
Boris Bonev's avatar
Boris Bonev committed
425
426
427

        # transpose: after this, m is split and c is local
        if self.comm_size_azimuth > 1:
428
            chan_shapes = compute_split_shapes(num_chans, self.comm_size_azimuth)
429
            x = distributed_transpose_azimuth.apply(x, (-1, -4), chan_shapes)
Boris Bonev's avatar
Boris Bonev committed
430
431
432

        # transpose: after this, c is split and h is local
        if self.comm_size_polar > 1:
433
            x = distributed_transpose_polar.apply(x, (-4, -2), self.lat_shapes)
Boris Bonev's avatar
Boris Bonev committed
434
435

        # do the Legendre-Gauss quadrature
436
        x = torch.view_as_real(x)
Boris Bonev's avatar
Boris Bonev committed
437
438

        # create output array
439
        xs = torch.zeros_like(x, dtype=x.dtype, device=x.device)
Boris Bonev's avatar
Boris Bonev committed
440
441
442

        # contraction - spheroidal component
        # real component
443
444
445
446
447
        xs[..., 0, :, :, 0] =   torch.einsum('...km,mlk->...lm', x[..., 0, :, :, 0], self.weights[0].to(xs.dtype)) \
                              - torch.einsum('...km,mlk->...lm', x[..., 1, :, :, 1], self.weights[1].to(xs.dtype))
        # imag component
        xs[..., 0, :, :, 1] =   torch.einsum('...km,mlk->...lm', x[..., 0, :, :, 1], self.weights[0].to(xs.dtype)) \
                              + torch.einsum('...km,mlk->...lm', x[..., 1, :, :, 0], self.weights[1].to(xs.dtype))
Boris Bonev's avatar
Boris Bonev committed
448
449
450

        # contraction - toroidal component
        # real component
451
452
        xs[..., 1, :, :, 0] = - torch.einsum('...km,mlk->...lm', x[..., 0, :, :, 1], self.weights[1].to(xs.dtype)) \
                              - torch.einsum('...km,mlk->...lm', x[..., 1, :, :, 0], self.weights[0].to(xs.dtype))
Boris Bonev's avatar
Boris Bonev committed
453
        # imag component
454
455
        xs[..., 1, :, :, 1] =   torch.einsum('...km,mlk->...lm', x[..., 0, :, :, 0], self.weights[1].to(xs.dtype)) \
                              - torch.einsum('...km,mlk->...lm', x[..., 1, :, :, 1], self.weights[0].to(xs.dtype))
Boris Bonev's avatar
Boris Bonev committed
456
457

        # pad if required
458
        x = torch.view_as_complex(xs)
Boris Bonev's avatar
Boris Bonev committed
459
460
461

        # transpose: after this, l is split and c is local
        if self.comm_size_polar > 1:
462
            chan_shapes = compute_split_shapes(num_chans, self.comm_size_polar)
463
            x = distributed_transpose_polar.apply(x, (-2, -4), chan_shapes)
Boris Bonev's avatar
Boris Bonev committed
464

465
        return x
Boris Bonev's avatar
Boris Bonev committed
466
467
468
469
470
471
472


class DistributedInverseRealVectorSHT(nn.Module):
    """
    Defines a module for computing the inverse (real-valued) vector SHT.
    Precomputes Legendre Gauss nodes, weights and associated Legendre polynomials on these nodes.

apaaris's avatar
apaaris committed
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
    Parameters
    ----------
    nlat: int
        Number of latitude points
    nlon: int
        Number of longitude points
    lmax: int
        Maximum spherical harmonic degree
    mmax: int
        Maximum spherical harmonic order
    grid: str
        Grid type ("equiangular", "legendre-gauss", "lobatto", "equidistant"), by default "equiangular"
    norm: str
        Normalization type ("ortho", "schmidt", "unnorm"), by default "ortho"
    csphase: bool
        Whether to apply the Condon-Shortley phase factor, by default True

    Returns
    -------
    x: torch.Tensor
        Tensor of shape (..., lmax, mmax)

    References
    ----------
Boris Bonev's avatar
Boris Bonev committed
497
498
499
    [1] Schaeffer, N. Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations, G3: Geochemistry, Geophysics, Geosystems.
    [2] Wang, B., Wang, L., Xie, Z.; Accurate calculation of spherical and vector spherical harmonic expansions via spectral element grids; Adv Comput Math.
    """
500
    def __init__(self, nlat, nlon, lmax=None, mmax=None, grid="equiangular", norm="ortho", csphase=True):
Boris Bonev's avatar
Boris Bonev committed
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528

        super().__init__()

        self.nlat = nlat
        self.nlon = nlon
        self.grid = grid
        self.norm = norm
        self.csphase = csphase

        # compute quadrature points
        if self.grid == "legendre-gauss":
            cost, _ = legendre_gauss_weights(nlat, -1, 1)
            self.lmax = lmax or self.nlat
        elif self.grid == "lobatto":
            cost, _ = lobatto_weights(nlat, -1, 1)
            self.lmax = lmax or self.nlat-1
        elif self.grid == "equiangular":
            cost, _ = clenshaw_curtiss_weights(nlat, -1, 1)
            self.lmax = lmax or self.nlat
        else:
            raise(ValueError("Unknown quadrature mode"))

        self.comm_size_polar = polar_group_size()
        self.comm_rank_polar = polar_group_rank()
        self.comm_size_azimuth = azimuth_group_size()
        self.comm_rank_azimuth = azimuth_group_rank()

        # apply cosine transform and flip them
Thorsten Kurth's avatar
Thorsten Kurth committed
529
        t = torch.flip(torch.arccos(cost), dims=(0,))
Boris Bonev's avatar
Boris Bonev committed
530
531
532
533

        # determine the dimensions
        self.mmax = mmax or self.nlon // 2 + 1

534
        # compute splits
535
536
537
538
        self.lat_shapes = compute_split_shapes(self.nlat, self.comm_size_polar)
        self.lon_shapes = compute_split_shapes(self.nlon, self.comm_size_azimuth)
        self.l_shapes = compute_split_shapes(self.lmax, self.comm_size_polar)
        self.m_shapes = compute_split_shapes(self.mmax, self.comm_size_azimuth)
Boris Bonev's avatar
Boris Bonev committed
539
540

        # compute legende polynomials
541
        dpct = _precompute_dlegpoly(self.mmax, self.lmax, t, norm=self.norm, inverse=True, csphase=self.csphase)
Boris Bonev's avatar
Boris Bonev committed
542
543

        # split in m
Thorsten Kurth's avatar
Thorsten Kurth committed
544
        dpct = split_tensor_along_dim(dpct, dim=1, num_chunks=self.comm_size_azimuth)[self.comm_rank_azimuth].contiguous()
Boris Bonev's avatar
Boris Bonev committed
545
546
547
548
549
550
551
552
553

        # register buffer
        self.register_buffer('dpct', dpct, persistent=False)

    def extra_repr(self):
        return f'nlat={self.nlat}, nlon={self.nlon},\n lmax={self.lmax}, mmax={self.mmax},\n grid={self.grid}, csphase={self.csphase}'

    def forward(self, x: torch.Tensor):

554
555
556
        if x.dim() < 4:
            raise ValueError(f"Expected tensor with at least 4 dimensions but got {x.dim()} instead")

557
        # store num channels
558
        num_chans = x.shape[-4]
Boris Bonev's avatar
Boris Bonev committed
559
560
561

        # transpose: after that, channels are split, l is local:
        if self.comm_size_polar > 1:
562
            x = distributed_transpose_polar.apply(x, (-4, -2), self.l_shapes)
Boris Bonev's avatar
Boris Bonev committed
563
564

        # Evaluate associated Legendre functions on the output nodes
565
        x = torch.view_as_real(x)
Boris Bonev's avatar
Boris Bonev committed
566
567
568

        # contraction - spheroidal component
        # real component
569
570
        srl =   torch.einsum('...lm,mlk->...km', x[..., 0, :, :, 0], self.dpct[0].to(x.dtype)) \
              - torch.einsum('...lm,mlk->...km', x[..., 1, :, :, 1], self.dpct[1].to(x.dtype))
Boris Bonev's avatar
Boris Bonev committed
571
        # imag component
572
573
        sim =   torch.einsum('...lm,mlk->...km', x[..., 0, :, :, 1], self.dpct[0].to(x.dtype)) \
              + torch.einsum('...lm,mlk->...km', x[..., 1, :, :, 0], self.dpct[1].to(x.dtype))
Boris Bonev's avatar
Boris Bonev committed
574
575
576

        # contraction - toroidal component
        # real component
577
578
        trl = - torch.einsum('...lm,mlk->...km', x[..., 0, :, :, 1], self.dpct[1].to(x.dtype)) \
              - torch.einsum('...lm,mlk->...km', x[..., 1, :, :, 0], self.dpct[0].to(x.dtype))
Boris Bonev's avatar
Boris Bonev committed
579
        # imag component
580
581
        tim =   torch.einsum('...lm,mlk->...km', x[..., 0, :, :, 0], self.dpct[1].to(x.dtype)) \
              - torch.einsum('...lm,mlk->...km', x[..., 1, :, :, 1], self.dpct[0].to(x.dtype))
Boris Bonev's avatar
Boris Bonev committed
582
583
584
585
586
587
588
589
590
591

        # reassemble
        s = torch.stack((srl, sim), -1)
        t = torch.stack((trl, tim), -1)
        xs = torch.stack((s, t), -4)

        # convert to complex
        x = torch.view_as_complex(xs)

        if self.comm_size_polar > 1:
592
            chan_shapes = compute_split_shapes(num_chans, self.comm_size_polar)
593
            x = distributed_transpose_polar.apply(x, (-2, -4), chan_shapes)
Boris Bonev's avatar
Boris Bonev committed
594
595
596

        # transpose: after this, channels are split and m is local
        if self.comm_size_azimuth > 1:
597
            x = distributed_transpose_azimuth.apply(x, (-4, -1), self.m_shapes)
Boris Bonev's avatar
Boris Bonev committed
598

599
600
601
602
603
        # set DCT and nyquist frequencies to zero
        x[..., 0].imag = 0.0
        if (self.nlon % 2 == 0) and (self.nlon // 2 < x.shape[-1]):
            x[..., self.nlon // 2].imag = 0.0

Boris Bonev's avatar
Boris Bonev committed
604
605
606
607
608
        # apply the inverse (real) FFT
        x = torch.fft.irfft(x, n=self.nlon, dim=-1, norm="forward")

        # transpose: after this, m is split and channels are local
        if self.comm_size_azimuth > 1:
609
            chan_shapes = compute_split_shapes(num_chans, self.comm_size_azimuth)
610
            x = distributed_transpose_azimuth.apply(x, (-1, -4), chan_shapes)
Boris Bonev's avatar
Boris Bonev committed
611

612
        return x