# coding=utf-8 # SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # import os import torch import torch.nn as nn import torch.fft import torch.nn.functional as F from torch_harmonics.quadrature import legendre_gauss_weights, lobatto_weights, clenshaw_curtiss_weights from torch_harmonics.legendre import _precompute_legpoly, _precompute_dlegpoly from torch_harmonics.distributed import polar_group_size, azimuth_group_size, distributed_transpose_azimuth, distributed_transpose_polar from torch_harmonics.distributed import polar_group_rank, azimuth_group_rank from torch_harmonics.distributed import compute_split_shapes, split_tensor_along_dim class DistributedRealSHT(nn.Module): """ Defines a module for computing the forward (real-valued) SHT. Precomputes Legendre Gauss nodes, weights and associated Legendre polynomials on these nodes. The SHT is applied to the last two dimensions of the input Parameters ---------- nlat: int Number of latitude points nlon: int Number of longitude points lmax: int Maximum spherical harmonic degree mmax: int Maximum spherical harmonic order grid: str Grid type ("equiangular", "legendre-gauss", "lobatto", "equidistant"), by default "equiangular" norm: str Normalization type ("ortho", "schmidt", "unnorm"), by default "ortho" csphase: bool Whether to apply the Condon-Shortley phase factor, by default True Returns ------- x: torch.Tensor Tensor of shape (..., lmax, mmax) References ---------- [1] Schaeffer, N. Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations, G3: Geochemistry, Geophysics, Geosystems. [2] Wang, B., Wang, L., Xie, Z.; Accurate calculation of spherical and vector spherical harmonic expansions via spectral element grids; Adv Comput Math. """ def __init__(self, nlat, nlon, lmax=None, mmax=None, grid="equiangular", norm="ortho", csphase=True): super().__init__() self.nlat = nlat self.nlon = nlon self.grid = grid self.norm = norm self.csphase = csphase # TODO: include assertions regarding the dimensions # compute quadrature points if self.grid == "legendre-gauss": cost, weights = legendre_gauss_weights(nlat, -1, 1) self.lmax = lmax or self.nlat elif self.grid == "lobatto": cost, weights = lobatto_weights(nlat, -1, 1) self.lmax = lmax or self.nlat-1 elif self.grid == "equiangular": cost, weights = clenshaw_curtiss_weights(nlat, -1, 1) # cost, w = fejer2_weights(nlat, -1, 1) self.lmax = lmax or self.nlat else: raise(ValueError("Unknown quadrature mode")) # get the comms grid: self.comm_size_polar = polar_group_size() self.comm_rank_polar = polar_group_rank() self.comm_size_azimuth = azimuth_group_size() self.comm_rank_azimuth = azimuth_group_rank() # apply cosine transform and flip them tq = torch.flip(torch.arccos(cost), dims=(0,)) # determine the dimensions self.mmax = mmax or self.nlon // 2 + 1 # compute splits self.lat_shapes = compute_split_shapes(self.nlat, self.comm_size_polar) self.lon_shapes = compute_split_shapes(self.nlon, self.comm_size_azimuth) self.l_shapes = compute_split_shapes(self.lmax, self.comm_size_polar) self.m_shapes = compute_split_shapes(self.mmax, self.comm_size_azimuth) # combine quadrature weights with the legendre weights pct = _precompute_legpoly(self.mmax, self.lmax, tq, norm=self.norm, csphase=self.csphase) weights = torch.einsum('mlk,k->mlk', pct, weights) # split weights weights = split_tensor_along_dim(weights, dim=0, num_chunks=self.comm_size_azimuth)[self.comm_rank_azimuth].contiguous() # remember quadrature weights self.register_buffer('weights', weights, persistent=False) def extra_repr(self): return f'nlat={self.nlat}, nlon={self.nlon},\n lmax={self.lmax}, mmax={self.mmax},\n grid={self.grid}, csphase={self.csphase}' def forward(self, x: torch.Tensor): if x.dim() < 3: raise ValueError(f"Expected tensor with at least 3 dimensions but got {x.dim()} instead") # we need to ensure that we can split the channels evenly num_chans = x.shape[-3] # h and w is split. First we make w local by transposing into channel dim if self.comm_size_azimuth > 1: x = distributed_transpose_azimuth.apply(x, (-3, -1), self.lon_shapes) # apply real fft in the longitudinal direction: make sure to truncate to nlon x = 2.0 * torch.pi * torch.fft.rfft(x, n=self.nlon, dim=-1, norm="forward") # truncate x = x[..., :self.mmax] # transpose: after this, m is split and c is local if self.comm_size_azimuth > 1: chan_shapes = compute_split_shapes(num_chans, self.comm_size_azimuth) x = distributed_transpose_azimuth.apply(x, (-1, -3), chan_shapes) # transpose: after this, c is split and h is local if self.comm_size_polar > 1: x = distributed_transpose_polar.apply(x, (-3, -2), self.lat_shapes) # do the Legendre-Gauss quadrature x = torch.view_as_real(x) # contraction xs = torch.einsum('...kmr,mlk->...lmr', x, self.weights.to(x.dtype)).contiguous() # cast to complex x = torch.view_as_complex(xs) # transpose: after this, l is split and c is local if self.comm_size_polar > 1: chan_shapes = compute_split_shapes(num_chans, self.comm_size_polar) x = distributed_transpose_polar.apply(x, (-2, -3), chan_shapes) return x class DistributedInverseRealSHT(nn.Module): """ Defines a module for computing the inverse (real-valued) SHT. Precomputes Legendre Gauss nodes, weights and associated Legendre polynomials on these nodes. Parameters ---------- nlat: int Number of latitude points nlon: int Number of longitude points lmax: int Maximum spherical harmonic degree mmax: int Maximum spherical harmonic order grid: str Grid type ("equiangular", "legendre-gauss", "lobatto", "equidistant"), by default "equiangular" norm: str Normalization type ("ortho", "schmidt", "unnorm"), by default "ortho" csphase: bool Whether to apply the Condon-Shortley phase factor, by default True Returns ------- x: torch.Tensor Tensor of shape (..., lmax, mmax) References ---------- [1] Schaeffer, N. Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations, G3: Geochemistry, Geophysics, Geosystems. [2] Wang, B., Wang, L., Xie, Z.; Accurate calculation of spherical and vector spherical harmonic expansions via spectral element grids; Adv Comput Math. """ def __init__(self, nlat, nlon, lmax=None, mmax=None, grid="equiangular", norm="ortho", csphase=True): super().__init__() self.nlat = nlat self.nlon = nlon self.grid = grid self.norm = norm self.csphase = csphase # compute quadrature points if self.grid == "legendre-gauss": cost, _ = legendre_gauss_weights(nlat, -1, 1) self.lmax = lmax or self.nlat elif self.grid == "lobatto": cost, _ = lobatto_weights(nlat, -1, 1) self.lmax = lmax or self.nlat-1 elif self.grid == "equiangular": cost, _ = clenshaw_curtiss_weights(nlat, -1, 1) self.lmax = lmax or self.nlat else: raise(ValueError("Unknown quadrature mode")) # get the comms grid: self.comm_size_polar = polar_group_size() self.comm_rank_polar = polar_group_rank() self.comm_size_azimuth = azimuth_group_size() self.comm_rank_azimuth = azimuth_group_rank() # apply cosine transform and flip them t = torch.flip(torch.arccos(cost), dims=(0,)) # determine the dimensions self.mmax = mmax or self.nlon // 2 + 1 # compute splits self.lat_shapes = compute_split_shapes(self.nlat, self.comm_size_polar) self.lon_shapes = compute_split_shapes(self.nlon, self.comm_size_azimuth) self.l_shapes = compute_split_shapes(self.lmax, self.comm_size_polar) self.m_shapes = compute_split_shapes(self.mmax, self.comm_size_azimuth) # compute legende polynomials pct = _precompute_legpoly(self.mmax, self.lmax, t, norm=self.norm, inverse=True, csphase=self.csphase) # split in m pct = split_tensor_along_dim(pct, dim=0, num_chunks=self.comm_size_azimuth)[self.comm_rank_azimuth].contiguous() # register self.register_buffer('pct', pct, persistent=False) def extra_repr(self): return f'nlat={self.nlat}, nlon={self.nlon},\n lmax={self.lmax}, mmax={self.mmax},\n grid={self.grid}, csphase={self.csphase}' def forward(self, x: torch.Tensor): if x.dim() < 3: raise ValueError(f"Expected tensor with at least 3 dimensions but got {x.dim()} instead") # we need to ensure that we can split the channels evenly num_chans = x.shape[-3] # transpose: after that, channels are split, l is local: if self.comm_size_polar > 1: x = distributed_transpose_polar.apply(x, (-3, -2), self.l_shapes) # Evaluate associated Legendre functions on the output nodes x = torch.view_as_real(x) # einsum xs = torch.einsum('...lmr, mlk->...kmr', x, self.pct.to(x.dtype)).contiguous() # inverse FFT x = torch.view_as_complex(xs) if self.comm_size_polar > 1: chan_shapes = compute_split_shapes(num_chans, self.comm_size_polar) x = distributed_transpose_polar.apply(x, (-2, -3), chan_shapes) # transpose: after this, channels are split and m is local if self.comm_size_azimuth > 1: x = distributed_transpose_azimuth.apply(x, (-3, -1), self.m_shapes) # set DCT and nyquist frequencies to 0: x[..., 0].imag = 0.0 if (self.nlon % 2 == 0) and (self.nlon // 2 < x.shape[-1]): x[..., self.nlon // 2].imag = 0.0 # apply the inverse (real) FFT x = torch.fft.irfft(x, n=self.nlon, dim=-1, norm="forward") # transpose: after this, m is split and channels are local if self.comm_size_azimuth > 1: chan_shapes = compute_split_shapes(num_chans, self.comm_size_azimuth) x = distributed_transpose_azimuth.apply(x, (-1, -3), chan_shapes) return x class DistributedRealVectorSHT(nn.Module): """ Defines a module for computing the forward (real) vector SHT. Precomputes Legendre Gauss nodes, weights and associated Legendre polynomials on these nodes. The SHT is applied to the last three dimensions of the input. Parameters ---------- nlat: int Number of latitude points nlon: int Number of longitude points lmax: int Maximum spherical harmonic degree mmax: int Maximum spherical harmonic order grid: str Grid type ("equiangular", "legendre-gauss", "lobatto", "equidistant"), by default "equiangular" norm: str Normalization type ("ortho", "schmidt", "unnorm"), by default "ortho" csphase: bool Whether to apply the Condon-Shortley phase factor, by default True Returns ------- x: torch.Tensor Tensor of shape (..., lmax, mmax) References ---------- [1] Schaeffer, N. Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations, G3: Geochemistry, Geophysics, Geosystems. [2] Wang, B., Wang, L., Xie, Z.; Accurate calculation of spherical and vector spherical harmonic expansions via spectral element grids; Adv Comput Math. """ def __init__(self, nlat, nlon, lmax=None, mmax=None, grid="equiangular", norm="ortho", csphase=True): super().__init__() self.nlat = nlat self.nlon = nlon self.grid = grid self.norm = norm self.csphase = csphase # compute quadrature points if self.grid == "legendre-gauss": cost, weights = legendre_gauss_weights(nlat, -1, 1) self.lmax = lmax or self.nlat elif self.grid == "lobatto": cost, weights = lobatto_weights(nlat, -1, 1) self.lmax = lmax or self.nlat-1 elif self.grid == "equiangular": cost, weights = clenshaw_curtiss_weights(nlat, -1, 1) # cost, w = fejer2_weights(nlat, -1, 1) self.lmax = lmax or self.nlat else: raise(ValueError("Unknown quadrature mode")) # get the comms grid: self.comm_size_polar = polar_group_size() self.comm_rank_polar = polar_group_rank() self.comm_size_azimuth = azimuth_group_size() self.comm_rank_azimuth = azimuth_group_rank() # apply cosine transform and flip them tq = torch.flip(torch.arccos(cost), dims=(0,)) # determine the dimensions self.mmax = mmax or self.nlon // 2 + 1 # compute splits self.lat_shapes = compute_split_shapes(self.nlat, self.comm_size_polar) self.lon_shapes = compute_split_shapes(self.nlon, self.comm_size_azimuth) self.l_shapes = compute_split_shapes(self.lmax, self.comm_size_polar) self.m_shapes = compute_split_shapes(self.mmax, self.comm_size_azimuth) # compute weights dpct = _precompute_dlegpoly(self.mmax, self.lmax, tq, norm=self.norm, csphase=self.csphase) # combine integration weights, normalization factor in to one: l = torch.arange(0, self.lmax) norm_factor = 1. / l / (l+1) norm_factor[0] = 1. weights = torch.einsum('dmlk,k,l->dmlk', dpct, weights, norm_factor) # since the second component is imaginary, we need to take complex conjugation into account weights[1] = -1 * weights[1] # we need to split in m, pad before: weights = split_tensor_along_dim(weights, dim=1, num_chunks=self.comm_size_azimuth)[self.comm_rank_azimuth].contiguous() # remember quadrature weights self.register_buffer('weights', weights, persistent=False) def extra_repr(self): return f'nlat={self.nlat}, nlon={self.nlon},\n lmax={self.lmax}, mmax={self.mmax},\n grid={self.grid}, csphase={self.csphase}' def forward(self, x: torch.Tensor): if x.dim() < 4: raise ValueError(f"Expected tensor with at least 4 dimensions but got {x.dim()} instead") # we need to ensure that we can split the channels evenly num_chans = x.shape[-4] # h and w is split. First we make w local by transposing into channel dim if self.comm_size_azimuth > 1: x = distributed_transpose_azimuth.apply(x, (-4, -1), self.lon_shapes) # apply real fft in the longitudinal direction: make sure to truncate to nlon x = 2.0 * torch.pi * torch.fft.rfft(x, n=self.nlon, dim=-1, norm="forward") # truncate x = x[..., :self.mmax] # transpose: after this, m is split and c is local if self.comm_size_azimuth > 1: chan_shapes = compute_split_shapes(num_chans, self.comm_size_azimuth) x = distributed_transpose_azimuth.apply(x, (-1, -4), chan_shapes) # transpose: after this, c is split and h is local if self.comm_size_polar > 1: x = distributed_transpose_polar.apply(x, (-4, -2), self.lat_shapes) # do the Legendre-Gauss quadrature x = torch.view_as_real(x) # create output array xs = torch.zeros_like(x, dtype=x.dtype, device=x.device) # contraction - spheroidal component # real component xs[..., 0, :, :, 0] = torch.einsum('...km,mlk->...lm', x[..., 0, :, :, 0], self.weights[0].to(xs.dtype)) \ - torch.einsum('...km,mlk->...lm', x[..., 1, :, :, 1], self.weights[1].to(xs.dtype)) # imag component xs[..., 0, :, :, 1] = torch.einsum('...km,mlk->...lm', x[..., 0, :, :, 1], self.weights[0].to(xs.dtype)) \ + torch.einsum('...km,mlk->...lm', x[..., 1, :, :, 0], self.weights[1].to(xs.dtype)) # contraction - toroidal component # real component xs[..., 1, :, :, 0] = - torch.einsum('...km,mlk->...lm', x[..., 0, :, :, 1], self.weights[1].to(xs.dtype)) \ - torch.einsum('...km,mlk->...lm', x[..., 1, :, :, 0], self.weights[0].to(xs.dtype)) # imag component xs[..., 1, :, :, 1] = torch.einsum('...km,mlk->...lm', x[..., 0, :, :, 0], self.weights[1].to(xs.dtype)) \ - torch.einsum('...km,mlk->...lm', x[..., 1, :, :, 1], self.weights[0].to(xs.dtype)) # pad if required x = torch.view_as_complex(xs) # transpose: after this, l is split and c is local if self.comm_size_polar > 1: chan_shapes = compute_split_shapes(num_chans, self.comm_size_polar) x = distributed_transpose_polar.apply(x, (-2, -4), chan_shapes) return x class DistributedInverseRealVectorSHT(nn.Module): """ Defines a module for computing the inverse (real-valued) vector SHT. Precomputes Legendre Gauss nodes, weights and associated Legendre polynomials on these nodes. Parameters ---------- nlat: int Number of latitude points nlon: int Number of longitude points lmax: int Maximum spherical harmonic degree mmax: int Maximum spherical harmonic order grid: str Grid type ("equiangular", "legendre-gauss", "lobatto", "equidistant"), by default "equiangular" norm: str Normalization type ("ortho", "schmidt", "unnorm"), by default "ortho" csphase: bool Whether to apply the Condon-Shortley phase factor, by default True Returns ------- x: torch.Tensor Tensor of shape (..., lmax, mmax) References ---------- [1] Schaeffer, N. Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations, G3: Geochemistry, Geophysics, Geosystems. [2] Wang, B., Wang, L., Xie, Z.; Accurate calculation of spherical and vector spherical harmonic expansions via spectral element grids; Adv Comput Math. """ def __init__(self, nlat, nlon, lmax=None, mmax=None, grid="equiangular", norm="ortho", csphase=True): super().__init__() self.nlat = nlat self.nlon = nlon self.grid = grid self.norm = norm self.csphase = csphase # compute quadrature points if self.grid == "legendre-gauss": cost, _ = legendre_gauss_weights(nlat, -1, 1) self.lmax = lmax or self.nlat elif self.grid == "lobatto": cost, _ = lobatto_weights(nlat, -1, 1) self.lmax = lmax or self.nlat-1 elif self.grid == "equiangular": cost, _ = clenshaw_curtiss_weights(nlat, -1, 1) self.lmax = lmax or self.nlat else: raise(ValueError("Unknown quadrature mode")) self.comm_size_polar = polar_group_size() self.comm_rank_polar = polar_group_rank() self.comm_size_azimuth = azimuth_group_size() self.comm_rank_azimuth = azimuth_group_rank() # apply cosine transform and flip them t = torch.flip(torch.arccos(cost), dims=(0,)) # determine the dimensions self.mmax = mmax or self.nlon // 2 + 1 # compute splits self.lat_shapes = compute_split_shapes(self.nlat, self.comm_size_polar) self.lon_shapes = compute_split_shapes(self.nlon, self.comm_size_azimuth) self.l_shapes = compute_split_shapes(self.lmax, self.comm_size_polar) self.m_shapes = compute_split_shapes(self.mmax, self.comm_size_azimuth) # compute legende polynomials dpct = _precompute_dlegpoly(self.mmax, self.lmax, t, norm=self.norm, inverse=True, csphase=self.csphase) # split in m dpct = split_tensor_along_dim(dpct, dim=1, num_chunks=self.comm_size_azimuth)[self.comm_rank_azimuth].contiguous() # register buffer self.register_buffer('dpct', dpct, persistent=False) def extra_repr(self): return f'nlat={self.nlat}, nlon={self.nlon},\n lmax={self.lmax}, mmax={self.mmax},\n grid={self.grid}, csphase={self.csphase}' def forward(self, x: torch.Tensor): if x.dim() < 4: raise ValueError(f"Expected tensor with at least 4 dimensions but got {x.dim()} instead") # store num channels num_chans = x.shape[-4] # transpose: after that, channels are split, l is local: if self.comm_size_polar > 1: x = distributed_transpose_polar.apply(x, (-4, -2), self.l_shapes) # Evaluate associated Legendre functions on the output nodes x = torch.view_as_real(x) # contraction - spheroidal component # real component srl = torch.einsum('...lm,mlk->...km', x[..., 0, :, :, 0], self.dpct[0].to(x.dtype)) \ - torch.einsum('...lm,mlk->...km', x[..., 1, :, :, 1], self.dpct[1].to(x.dtype)) # imag component sim = torch.einsum('...lm,mlk->...km', x[..., 0, :, :, 1], self.dpct[0].to(x.dtype)) \ + torch.einsum('...lm,mlk->...km', x[..., 1, :, :, 0], self.dpct[1].to(x.dtype)) # contraction - toroidal component # real component trl = - torch.einsum('...lm,mlk->...km', x[..., 0, :, :, 1], self.dpct[1].to(x.dtype)) \ - torch.einsum('...lm,mlk->...km', x[..., 1, :, :, 0], self.dpct[0].to(x.dtype)) # imag component tim = torch.einsum('...lm,mlk->...km', x[..., 0, :, :, 0], self.dpct[1].to(x.dtype)) \ - torch.einsum('...lm,mlk->...km', x[..., 1, :, :, 1], self.dpct[0].to(x.dtype)) # reassemble s = torch.stack((srl, sim), -1) t = torch.stack((trl, tim), -1) xs = torch.stack((s, t), -4) # convert to complex x = torch.view_as_complex(xs) if self.comm_size_polar > 1: chan_shapes = compute_split_shapes(num_chans, self.comm_size_polar) x = distributed_transpose_polar.apply(x, (-2, -4), chan_shapes) # transpose: after this, channels are split and m is local if self.comm_size_azimuth > 1: x = distributed_transpose_azimuth.apply(x, (-4, -1), self.m_shapes) # set DCT and nyquist frequencies to zero x[..., 0].imag = 0.0 if (self.nlon % 2 == 0) and (self.nlon // 2 < x.shape[-1]): x[..., self.nlon // 2].imag = 0.0 # apply the inverse (real) FFT x = torch.fft.irfft(x, n=self.nlon, dim=-1, norm="forward") # transpose: after this, m is split and channels are local if self.comm_size_azimuth > 1: chan_shapes = compute_split_shapes(num_chans, self.comm_size_azimuth) x = distributed_transpose_azimuth.apply(x, (-1, -4), chan_shapes) return x