test_sht.py 10.9 KB
Newer Older
Boris Bonev's avatar
Boris Bonev committed
1
2
3
4
# coding=utf-8

# SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
Boris Bonev's avatar
Boris Bonev committed
5
#
Boris Bonev's avatar
Boris Bonev committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

import unittest
33
from parameterized import parameterized, parameterized_class
Boris Bonev's avatar
Boris Bonev committed
34
import math
Boris Bonev's avatar
Boris Bonev committed
35
import torch
Boris Bonev's avatar
Boris Bonev committed
36
from torch.autograd import gradcheck
Boris Bonev's avatar
Boris Bonev committed
37
import torch_harmonics as th
Boris Bonev's avatar
Boris Bonev committed
38

39
40
41
42
43
_devices = [(torch.device("cpu"),)]
if torch.cuda.is_available():
    _devices.append((torch.device("cuda"),))


Boris Bonev's avatar
Boris Bonev committed
44
class TestLegendrePolynomials(unittest.TestCase):
45
    """Test the associated Legendre polynomials (CPU/CUDA if available)."""
Boris Bonev's avatar
Boris Bonev committed
46
    def setUp(self):
Thorsten Kurth's avatar
Thorsten Kurth committed
47
        self.cml = lambda m, l: math.sqrt((2 * l + 1) / 4 / math.pi) * math.sqrt(math.factorial(l - m) / math.factorial(l + m))
Boris Bonev's avatar
Boris Bonev committed
48
49
50
51
        self.pml = dict()

        # preparing associated Legendre Polynomials (These include the Condon-Shortley phase)
        # for reference see e.g. https://en.wikipedia.org/wiki/Associated_Legendre_polynomials
Thorsten Kurth's avatar
Thorsten Kurth committed
52
        self.pml[(0, 0)] = lambda x: torch.ones_like(x)
Boris Bonev's avatar
Boris Bonev committed
53
        self.pml[(0, 1)] = lambda x: x
Thorsten Kurth's avatar
Thorsten Kurth committed
54
        self.pml[(1, 1)] = lambda x: -torch.sqrt(1.0 - x**2)
Boris Bonev's avatar
Boris Bonev committed
55
        self.pml[(0, 2)] = lambda x: 0.5 * (3 * x**2 - 1)
Thorsten Kurth's avatar
Thorsten Kurth committed
56
        self.pml[(1, 2)] = lambda x: -3 * x * torch.sqrt(1.0 - x**2)
Boris Bonev's avatar
Boris Bonev committed
57
58
        self.pml[(2, 2)] = lambda x: 3 * (1 - x**2)
        self.pml[(0, 3)] = lambda x: 0.5 * (5 * x**3 - 3 * x)
Thorsten Kurth's avatar
Thorsten Kurth committed
59
        self.pml[(1, 3)] = lambda x: 1.5 * (1 - 5 * x**2) * torch.sqrt(1.0 - x**2)
Boris Bonev's avatar
Boris Bonev committed
60
        self.pml[(2, 3)] = lambda x: 15 * x * (1 - x**2)
Thorsten Kurth's avatar
Thorsten Kurth committed
61
        self.pml[(3, 3)] = lambda x: -15 * torch.sqrt(1.0 - x**2) ** 3
Boris Bonev's avatar
Boris Bonev committed
62
63
64

        self.lmax = self.mmax = 4

Boris Bonev's avatar
Boris Bonev committed
65
66
        self.tol = 1e-9

Thorsten Kurth's avatar
Thorsten Kurth committed
67
    def test_legendre(self, verbose=False):
apaaris's avatar
apaaris committed
68
69
70
71
72
73
74
75
        """
        Test the computation of associated Legendre polynomials.

        Parameters
        ----------
        verbose : bool, optional
            Whether to print verbose output, by default False
        """
Thorsten Kurth's avatar
Thorsten Kurth committed
76
77
        if verbose:
            print("Testing computation of associated Legendre polynomials")
Boris Bonev's avatar
Boris Bonev committed
78

Thorsten Kurth's avatar
Thorsten Kurth committed
79
        t = torch.linspace(0, 1, 100, dtype=torch.float64)
Boris Bonev's avatar
Boris Bonev committed
80
        vdm = th.legendre.legpoly(self.mmax, self.lmax, t)
Boris Bonev's avatar
Boris Bonev committed
81
82

        for l in range(self.lmax):
Boris Bonev's avatar
Boris Bonev committed
83
84
            for m in range(l + 1):
                diff = vdm[m, l] / self.cml(m, l) - self.pml[(m, l)](t)
Boris Bonev's avatar
Boris Bonev committed
85
                self.assertTrue(diff.max() <= self.tol)
Boris Bonev's avatar
Boris Bonev committed
86
87


88
@parameterized_class(("device"), _devices)
Boris Bonev's avatar
Boris Bonev committed
89
class TestSphericalHarmonicTransform(unittest.TestCase):
90
    """Test the spherical harmonic transform (CPU/CUDA if available)."""
Boris Bonev's avatar
Boris Bonev committed
91
    def setUp(self):
apaaris's avatar
apaaris committed
92
93
94
95
        if torch.cuda.is_available():
            self.device = torch.device("cuda")
        else:
            self.device = torch.device("cpu")
Boris Bonev's avatar
Boris Bonev committed
96
97
98

    @parameterized.expand(
        [
99
100
101
102
103
104
105
106
107
108
109
110
111
112
            # even-even
            [32, 64, 32, "ortho", "equiangular", 1e-9, False],
            [32, 64, 32, "ortho", "legendre-gauss", 1e-9, False],
            [32, 64, 32, "ortho", "lobatto", 1e-9, False],
            [32, 64, 32, "four-pi", "equiangular", 1e-9, False],
            [32, 64, 32, "four-pi", "legendre-gauss", 1e-9, False],
            [32, 64, 32, "four-pi", "lobatto", 1e-9, False],
            [32, 64, 32, "schmidt", "equiangular", 1e-9, False],
            [32, 64, 32, "schmidt", "legendre-gauss", 1e-9, False],
            [32, 64, 32, "schmidt", "lobatto", 1e-9, False],
            # odd-even
            [33, 64, 32, "ortho", "equiangular", 1e-9, False],
            [33, 64, 32, "ortho", "legendre-gauss", 1e-9, False],
            [33, 64, 32, "ortho", "lobatto", 1e-9, False],
Thorsten Kurth's avatar
Thorsten Kurth committed
113
            [33, 64, 32, "four-pi", "equiangular", 1e-9, False],
114
115
116
117
118
            [33, 64, 32, "four-pi", "legendre-gauss", 1e-9, False],
            [33, 64, 32, "four-pi", "lobatto", 1e-9, False],
            [33, 64, 32, "schmidt", "equiangular", 1e-9, False],
            [33, 64, 32, "schmidt", "legendre-gauss", 1e-9, False],
            [33, 64, 32, "schmidt", "lobatto", 1e-9, False],
Thorsten Kurth's avatar
Thorsten Kurth committed
119
120
        ],
        skip_on_empty=True,
Boris Bonev's avatar
Boris Bonev committed
121
    )
Thorsten Kurth's avatar
Thorsten Kurth committed
122
    def test_forward_inverse(self, nlat, nlon, batch_size, norm, grid, tol, verbose):
Thorsten Kurth's avatar
Thorsten Kurth committed
123
124
        if verbose:
            print(f"Testing real-valued SHT on {nlat}x{nlon} {grid} grid with {norm} normalization on {self.device.type} device")
Boris Bonev's avatar
Boris Bonev committed
125
126

        testiters = [1, 2, 4, 8, 16]
Boris Bonev's avatar
Boris Bonev committed
127
128
        if grid == "equiangular":
            mmax = nlat // 2
129
130
        elif grid == "lobatto":
            mmax = nlat - 1
Boris Bonev's avatar
Boris Bonev committed
131
132
        else:
            mmax = nlat
Boris Bonev's avatar
Boris Bonev committed
133
134
        lmax = mmax

Boris Bonev's avatar
Boris Bonev committed
135
136
        sht = th.RealSHT(nlat, nlon, mmax=mmax, lmax=lmax, grid=grid, norm=norm).to(self.device)
        isht = th.InverseRealSHT(nlat, nlon, mmax=mmax, lmax=lmax, grid=grid, norm=norm).to(self.device)
Boris Bonev's avatar
Boris Bonev committed
137

Boris Bonev's avatar
Boris Bonev committed
138
139
140
141
        with torch.no_grad():
            coeffs = torch.zeros(batch_size, lmax, mmax, device=self.device, dtype=torch.complex128)
            coeffs[:, :lmax, :mmax] = torch.randn(batch_size, lmax, mmax, device=self.device, dtype=torch.complex128)
            signal = isht(coeffs)
Boris Bonev's avatar
Boris Bonev committed
142

Boris Bonev's avatar
Boris Bonev committed
143
        # testing error accumulation
Boris Bonev's avatar
Boris Bonev committed
144
        for iter in testiters:
Boris Bonev's avatar
Boris Bonev committed
145
            with self.subTest(i=iter):
Thorsten Kurth's avatar
Thorsten Kurth committed
146
147
                if verbose:
                    print(f"{iter} iterations of batchsize {batch_size}:")
Boris Bonev's avatar
Boris Bonev committed
148
149
150

                base = signal

151
                for _ in range(iter):
Boris Bonev's avatar
Boris Bonev committed
152
                    base = isht(sht(base))
Boris Bonev's avatar
Boris Bonev committed
153
154

                err = torch.mean(torch.norm(base - signal, p="fro", dim=(-1, -2)) / torch.norm(signal, p="fro", dim=(-1, -2)))
Thorsten Kurth's avatar
Thorsten Kurth committed
155
156
                if verbose:
                    print(f"final relative error: {err.item()}")
Boris Bonev's avatar
Boris Bonev committed
157
158
                self.assertTrue(err.item() <= tol)

Boris Bonev's avatar
Boris Bonev committed
159
160
    @parameterized.expand(
        [
161
            # even-even
Thorsten Kurth's avatar
Thorsten Kurth committed
162
163
            [12, 24, 2, "ortho", "equiangular", 1e-5, False],
            [12, 24, 2, "ortho", "legendre-gauss", 1e-5, False],
164
            [12, 24, 2, "ortho", "lobatto", 1e-5, False],
Thorsten Kurth's avatar
Thorsten Kurth committed
165
166
            [12, 24, 2, "four-pi", "equiangular", 1e-5, False],
            [12, 24, 2, "four-pi", "legendre-gauss", 1e-5, False],
167
            [12, 24, 2, "four-pi", "lobatto", 1e-5, False],
Thorsten Kurth's avatar
Thorsten Kurth committed
168
169
            [12, 24, 2, "schmidt", "equiangular", 1e-5, False],
            [12, 24, 2, "schmidt", "legendre-gauss", 1e-5, False],
170
            [12, 24, 2, "schmidt", "lobatto", 1e-5, False],
171
            # odd-even
Thorsten Kurth's avatar
Thorsten Kurth committed
172
173
            [15, 30, 2, "ortho", "equiangular", 1e-5, False],
            [15, 30, 2, "ortho", "legendre-gauss", 1e-5, False],
174
            [15, 30, 2, "ortho", "lobatto", 1e-5, False],
Thorsten Kurth's avatar
Thorsten Kurth committed
175
176
            [15, 30, 2, "four-pi", "equiangular", 1e-5, False],
            [15, 30, 2, "four-pi", "legendre-gauss", 1e-5, False],
177
            [15, 30, 2, "four-pi", "lobatto", 1e-5, False],
Thorsten Kurth's avatar
Thorsten Kurth committed
178
179
            [15, 30, 2, "schmidt", "equiangular", 1e-5, False],
            [15, 30, 2, "schmidt", "legendre-gauss", 1e-5, False],
180
            [15, 30, 2, "schmidt", "lobatto", 1e-5, False],
Thorsten Kurth's avatar
Thorsten Kurth committed
181
182
        ],
        skip_on_empty=True,
Boris Bonev's avatar
Boris Bonev committed
183
    )
Thorsten Kurth's avatar
Thorsten Kurth committed
184
    def test_grads(self, nlat, nlon, batch_size, norm, grid, tol, verbose):
Thorsten Kurth's avatar
Thorsten Kurth committed
185
186
        if verbose:
            print(f"Testing gradients of real-valued SHT on {nlat}x{nlon} {grid} grid with {norm} normalization")
Boris Bonev's avatar
Boris Bonev committed
187
188
189

        if grid == "equiangular":
            mmax = nlat // 2
190
191
        elif grid == "lobatto":
            mmax = nlat - 1
Boris Bonev's avatar
Boris Bonev committed
192
193
        else:
            mmax = nlat
Boris Bonev's avatar
Boris Bonev committed
194
195
        lmax = mmax

Boris Bonev's avatar
Boris Bonev committed
196
197
        sht = th.RealSHT(nlat, nlon, mmax=mmax, lmax=lmax, grid=grid, norm=norm).to(self.device)
        isht = th.InverseRealSHT(nlat, nlon, mmax=mmax, lmax=lmax, grid=grid, norm=norm).to(self.device)
Boris Bonev's avatar
Boris Bonev committed
198

Boris Bonev's avatar
Boris Bonev committed
199
200
201
202
        with torch.no_grad():
            coeffs = torch.zeros(batch_size, lmax, mmax, device=self.device, dtype=torch.complex128)
            coeffs[:, :lmax, :mmax] = torch.randn(batch_size, lmax, mmax, device=self.device, dtype=torch.complex128)
            signal = isht(coeffs)
Boris Bonev's avatar
Boris Bonev committed
203
204

        # test the sht
Boris Bonev's avatar
Boris Bonev committed
205
        grad_input = torch.randn_like(signal, requires_grad=True)
Boris Bonev's avatar
Boris Bonev committed
206
207
208
209
210
211
212
        err_handle = lambda x: torch.mean(torch.norm(sht(x) - coeffs, p="fro", dim=(-1, -2)) / torch.norm(coeffs, p="fro", dim=(-1, -2)))
        test_result = gradcheck(err_handle, grad_input, eps=1e-6, atol=tol)
        self.assertTrue(test_result)

        # test the isht
        grad_input = torch.randn_like(coeffs, requires_grad=True)
        err_handle = lambda x: torch.mean(torch.norm(isht(x) - signal, p="fro", dim=(-1, -2)) / torch.norm(signal, p="fro", dim=(-1, -2)))
Boris Bonev's avatar
Boris Bonev committed
213
        test_result = gradcheck(err_handle, grad_input, eps=1e-6, atol=tol)
Boris Bonev's avatar
Boris Bonev committed
214
        self.assertTrue(test_result)
Boris Bonev's avatar
Boris Bonev committed
215

Thorsten Kurth's avatar
Thorsten Kurth committed
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
    @parameterized.expand(
        [
            # even-even
            [12, 24, 2, "ortho", "equiangular", 1e-5, False],
            [12, 24, 2, "ortho", "legendre-gauss", 1e-5, False],
            [12, 24, 2, "ortho", "lobatto", 1e-5, False],
        ],
        skip_on_empty=True,
    )
    @unittest.skipIf(not torch.cuda.is_available(), "CUDA is not available")
    def test_device_instantiation(self, nlat, nlon, batch_size, norm, grid, tol, verbose):
        if verbose:
            print(f"Testing device instantiation of real-valued SHT on {nlat}x{nlon} {grid} grid with {norm} normalization")

        if grid == "equiangular":
            mmax = nlat // 2
        elif grid == "lobatto":
            mmax = nlat - 1
        else:
            mmax = nlat
        lmax = mmax

        # init on cpu
        sht_host = th.RealSHT(nlat, nlon, mmax=mmax, lmax=lmax, grid=grid, norm=norm)
        isht_host = th.InverseRealSHT(nlat, nlon, mmax=mmax, lmax=lmax, grid=grid, norm=norm)

        # init on device
        with torch.device(self.device):
            sht_device = th.RealSHT(nlat, nlon, mmax=mmax, lmax=lmax, grid=grid, norm=norm)
            isht_device = th.InverseRealSHT(nlat, nlon, mmax=mmax, lmax=lmax, grid=grid, norm=norm)

        self.assertTrue(torch.allclose(sht_host.weights.cpu(), sht_device.weights.cpu()))
        self.assertTrue(torch.allclose(isht_host.pct.cpu(), isht_device.pct.cpu()))

Boris Bonev's avatar
Boris Bonev committed
250

Boris Bonev's avatar
Boris Bonev committed
251
252
if __name__ == "__main__":
    unittest.main()