test_sht.py 6.7 KB
Newer Older
Boris Bonev's avatar
Boris Bonev committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# coding=utf-8

# SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
# 
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

import unittest
Boris Bonev's avatar
Boris Bonev committed
33
34
from parameterized import parameterized
import math
Boris Bonev's avatar
Boris Bonev committed
35
36
import numpy as np
import torch
Boris Bonev's avatar
Boris Bonev committed
37
from torch.autograd import gradcheck
Boris Bonev's avatar
Boris Bonev committed
38
39
40
41
42
from torch_harmonics import *

class TestLegendrePolynomials(unittest.TestCase):

    def setUp(self):
Boris Bonev's avatar
Boris Bonev committed
43
        self.cml = lambda m, l : np.sqrt((2*l + 1) / 4 / np.pi) * np.sqrt(math.factorial(l-m) / math.factorial(l+m))
Boris Bonev's avatar
Boris Bonev committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
        self.pml = dict()

        # preparing associated Legendre Polynomials (These include the Condon-Shortley phase)
        # for reference see e.g. https://en.wikipedia.org/wiki/Associated_Legendre_polynomials
        self.pml[(0, 0)] = lambda x : np.ones_like(x)
        self.pml[(0, 1)] = lambda x : x
        self.pml[(1, 1)] = lambda x : - np.sqrt(1. - x**2)
        self.pml[(0, 2)] = lambda x : 0.5 * (3*x**2 - 1)
        self.pml[(1, 2)] = lambda x : - 3 * x * np.sqrt(1. - x**2)
        self.pml[(2, 2)] = lambda x : 3 * (1 - x**2)
        self.pml[(0, 3)] = lambda x : 0.5 * (5*x**3 - 3*x)
        self.pml[(1, 3)] = lambda x : 1.5 * (1 - 5*x**2) * np.sqrt(1. - x**2)
        self.pml[(2, 3)] = lambda x : 15 * x * (1 - x**2)
        self.pml[(3, 3)] = lambda x : -15 * np.sqrt(1. - x**2)**3

        self.lmax = self.mmax = 4

Boris Bonev's avatar
Boris Bonev committed
61
62
        self.tol = 1e-9

Boris Bonev's avatar
Boris Bonev committed
63
64
    def test_legendre(self):
        print("Testing computation of associated Legendre polynomials")
65
        from torch_harmonics.legendre import legpoly
Boris Bonev's avatar
Boris Bonev committed
66

67
68
        t = np.linspace(0, 1, 100)
        vdm = legpoly(self.mmax, self.lmax, t)
Boris Bonev's avatar
Boris Bonev committed
69
70
71

        for l in range(self.lmax):
            for m in range(l+1):
72
                diff = vdm[m, l] / self.cml(m,l) - self.pml[(m,l)](t)
Boris Bonev's avatar
Boris Bonev committed
73
                self.assertTrue(diff.max() <= self.tol)
Boris Bonev's avatar
Boris Bonev committed
74
75
76
77
78
79
80
81
82
83
84
85
86


class TestSphericalHarmonicTransform(unittest.TestCase):

    def setUp(self):

        if torch.cuda.is_available():
            print("Running test on GPU")
            self.device = torch.device('cuda')
        else:
            print("Running test on CPU")
            self.device = torch.device('cpu')

Boris Bonev's avatar
Boris Bonev committed
87
88
89
90
91
92
93
94
95
96
    @parameterized.expand([
        [256, 512, 32, "ortho",   "equiangular",    1e-9],
        [256, 512, 32, "ortho",   "legendre-gauss", 1e-9],
        [256, 512, 32, "four-pi", "equiangular",    1e-9],
        [256, 512, 32, "four-pi", "legendre-gauss", 1e-9],
        [256, 512, 32, "schmidt", "equiangular",    1e-9],
        [256, 512, 32, "schmidt", "legendre-gauss", 1e-9],
    ])
    def test_sht(self, nlat, nlon, batch_size, norm, grid, tol):
        print(f"Testing real-valued SHT on {nlat}x{nlon} {grid} grid with {norm} normalization")
Boris Bonev's avatar
Boris Bonev committed
97
98

        testiters = [1, 2, 4, 8, 16]
Boris Bonev's avatar
Boris Bonev committed
99
100
101
102
        if grid == "equiangular":
            mmax = nlat // 2
        else:
            mmax = nlat
Boris Bonev's avatar
Boris Bonev committed
103
104
        lmax = mmax

Boris Bonev's avatar
Boris Bonev committed
105
106
        sht = RealSHT(nlat, nlon, mmax=mmax, lmax=lmax, grid=grid, norm=norm).to(self.device)
        isht = InverseRealSHT(nlat, nlon, mmax=mmax, lmax=lmax, grid=grid, norm=norm).to(self.device)
Boris Bonev's avatar
Boris Bonev committed
107

Boris Bonev's avatar
Boris Bonev committed
108
109
110
111
        with torch.no_grad():
            coeffs = torch.zeros(batch_size, lmax, mmax, device=self.device, dtype=torch.complex128)
            coeffs[:, :lmax, :mmax] = torch.randn(batch_size, lmax, mmax, device=self.device, dtype=torch.complex128)
            signal = isht(coeffs)
Boris Bonev's avatar
Boris Bonev committed
112
        
Boris Bonev's avatar
Boris Bonev committed
113
        # testing error accumulation
Boris Bonev's avatar
Boris Bonev committed
114
115
        for iter in testiters:
            with self.subTest(i = iter):
Boris Bonev's avatar
Boris Bonev committed
116
                print(f"{iter} iterations of batchsize {batch_size}:")
Boris Bonev's avatar
Boris Bonev committed
117
118
119

                base = signal

120
                for _ in range(iter):
Boris Bonev's avatar
Boris Bonev committed
121
122
                    base = isht(sht(base))
            
Boris Bonev's avatar
Boris Bonev committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
                err = torch.mean(torch.norm(base-signal, p='fro', dim=(-1,-2)) / torch.norm(signal, p='fro', dim=(-1,-2)) )
                print(f"final relative error: {err.item()}")
                self.assertTrue(err.item() <= tol)

    @parameterized.expand([
        [12, 24, 2, "ortho",   "equiangular",    1e-5],
        [12, 24, 2, "ortho",   "legendre-gauss", 1e-5],
        [12, 24, 2, "four-pi", "equiangular",    1e-5],
        [12, 24, 2, "four-pi", "legendre-gauss", 1e-5],
        [12, 24, 2, "schmidt", "equiangular",    1e-5],
        [12, 24, 2, "schmidt", "legendre-gauss", 1e-5],
    ])
    def test_sht_grad(self, nlat, nlon, batch_size, norm, grid, tol):
        print(f"Testing gradients of real-valued SHT on {nlat}x{nlon} {grid} grid with {norm} normalization")

        if grid == "equiangular":
            mmax = nlat // 2
        else:
            mmax = nlat
Boris Bonev's avatar
Boris Bonev committed
142
143
        lmax = mmax

Boris Bonev's avatar
Boris Bonev committed
144
145
        sht = RealSHT(nlat, nlon, mmax=mmax, lmax=lmax, grid=grid, norm=norm).to(self.device)
        isht = InverseRealSHT(nlat, nlon, mmax=mmax, lmax=lmax, grid=grid, norm=norm).to(self.device)
Boris Bonev's avatar
Boris Bonev committed
146

Boris Bonev's avatar
Boris Bonev committed
147
148
149
150
        with torch.no_grad():
            coeffs = torch.zeros(batch_size, lmax, mmax, device=self.device, dtype=torch.complex128)
            coeffs[:, :lmax, :mmax] = torch.randn(batch_size, lmax, mmax, device=self.device, dtype=torch.complex128)
            signal = isht(coeffs)
Boris Bonev's avatar
Boris Bonev committed
151
        
Boris Bonev's avatar
Boris Bonev committed
152
153
154
155
        input = torch.randn_like(signal, requires_grad=True)
        err_handle = lambda x : torch.mean(torch.norm( isht(sht(x)) - signal , p='fro', dim=(-1,-2)) / torch.norm(signal, p='fro', dim=(-1,-2)) )
        test_result = gradcheck(err_handle, input, eps=1e-6, atol=tol)
        self.assertTrue(test_result)
Boris Bonev's avatar
Boris Bonev committed
156
157
158


if __name__ == '__main__':
Boris Bonev's avatar
Boris Bonev committed
159
    unittest.main()