test_attention.py 14.2 KB
Newer Older
Boris Bonev's avatar
Boris Bonev committed
1
2
# coding=utf-8

Max Rietmann's avatar
Max Rietmann committed
3
# SPDX-FileCopyrightText: Copyright (c) 2025 The torch-harmonics Authors. All rights reserved.
Boris Bonev's avatar
Boris Bonev committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

import unittest
33
from parameterized import parameterized, parameterized_class
Boris Bonev's avatar
Boris Bonev committed
34
35
36
37

# import math
import numpy as np
import torch
38
import torch.nn as nn
Boris Bonev's avatar
Boris Bonev committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

# from torch.autograd import gradcheck
from torch_harmonics import AttentionS2, NeighborhoodAttentionS2

from torch_harmonics._neighborhood_attention import (
    _neighborhood_attention_s2_torch,
    _neighborhood_attention_s2_fwd_torch,
    _neighborhood_attention_s2_bwd_dv_torch,
    _neighborhood_attention_s2_bwd_dk_torch,
    _neighborhood_attention_s2_bwd_dq_torch,
)

# import custom C++/CUDA extensions
try:
    import attention_cuda_extension

    _cuda_extension_available = True
except ImportError as err:
    print(f"Warning: Couldn't Import cuda attention: {err}")
    attention_cuda_extension = None
    _cuda_extension_available = False

61
62
63
64
_devices = [(torch.device("cpu"),)]
if torch.cuda.is_available():
    _devices.append((torch.device("cuda"),))

Thorsten Kurth's avatar
Thorsten Kurth committed
65
_perf_test_thresholds = {"fwd_ms": 50, "bwd_ms": 150}
Boris Bonev's avatar
Boris Bonev committed
66

67
68

@parameterized_class(("device"), _devices)
69
class TestNeighborhoodAttentionS2(unittest.TestCase):
70
    """Test the neighborhood attention module (CPU/CUDA if available)."""
apaaris's avatar
apaaris committed
71
    
Boris Bonev's avatar
Boris Bonev committed
72
    def setUp(self):
Thorsten Kurth's avatar
Thorsten Kurth committed
73
        torch.manual_seed(333)
74
75
        if self.device.type == "cuda":
            torch.cuda.manual_seed(333)
Boris Bonev's avatar
Boris Bonev committed
76
77
78

    @parameterized.expand(
        [
79
80
81
82
            # Format: [batch_size, channels, heads, in_shape, out_shape, grid_in, grid_out, atol, rtol]
            [4, 4, 1, (6, 12), (6, 12), "equiangular", "equiangular", 1e-5, 1e-3],
            [4, 4, 2, (6, 12), (6, 12), "equiangular", "equiangular", 1e-5, 1e-3],
            [4, 4, 4, (6, 12), (6, 12), "equiangular", "equiangular", 1e-5, 1e-3],
83
84
            [4, 1, 1, (2, 4), (2, 4), "equiangular", "equiangular", 1e-5, 1e-3],
            [4, 4, 4, (6, 12), (6, 12), "legendre-gauss", "legendre-gauss", 1e-5, 1e-3],
85
            [4, 4, 1, (6, 12), (6, 12), "lobatto", "lobatto", 1e-5, 1e-3],
Thorsten Kurth's avatar
Thorsten Kurth committed
86
87
        ],
        skip_on_empty=True,
Boris Bonev's avatar
Boris Bonev committed
88
    )
89
    def test_custom_implementation(self, batch_size, channels, heads, in_shape, out_shape, grid_in, grid_out, atol, rtol, verbose=False):
90
        """Tests numerical equivalence between the custom (CUDA) implementation and the reference torch implementation"""
Boris Bonev's avatar
Boris Bonev committed
91
92
93
94

        nlat_in, nlon_in = in_shape
        nlat_out, nlon_out = out_shape

95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
        # Helper: create inputs
        inputs_ref = {
            "k": torch.randn(batch_size, channels, nlat_in, nlon_in, requires_grad=True, device=self.device, dtype=torch.float32),
            "v": torch.randn(batch_size, channels, nlat_in, nlon_in, requires_grad=True, device=self.device, dtype=torch.float32),
            "q": torch.randn(batch_size, channels, nlat_out, nlon_out, requires_grad=True, device=self.device, dtype=torch.float32),
        }
        inputs = {k: v.detach().clone().to(self.device).requires_grad_() for k, v in inputs_ref.items()}

        # reference input and model
        model_ref = NeighborhoodAttentionS2(in_channels=channels, num_heads=heads, in_shape=in_shape, out_shape=out_shape, grid_in=grid_in, grid_out=grid_out, bias=True).to(
            self.device
        )

        # Device model and inputs
        model = NeighborhoodAttentionS2(in_channels=channels, num_heads=heads, in_shape=in_shape, out_shape=out_shape, grid_in=grid_in, grid_out=grid_out, bias=True)

        # Synchronize parameters of model
        model.load_state_dict(model_ref.state_dict())
        model = model.to(self.device)
        for (name_ref, p_ref), (name, p) in zip(model_ref.named_parameters(), model.named_parameters()):
115
            self.assertTrue(torch.allclose(p_ref, p))
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

        # reference forward passes
        out_ref = _neighborhood_attention_s2_torch(
            inputs_ref["k"],
            inputs_ref["v"],
            inputs_ref["q"] * model_ref.scale,
            model_ref.k_weights,
            model_ref.v_weights,
            model_ref.q_weights,
            model_ref.k_bias,
            model_ref.v_bias,
            model_ref.q_bias,
            model_ref.quad_weights,
            model_ref.psi_col_idx,
            model_ref.psi_roff_idx,
            model_ref.num_heads,
            model_ref.nlon_in,
            model_ref.nlat_out,
            model_ref.nlon_out,
        )
        out_ref = nn.functional.conv2d(out_ref, model_ref.proj_weights, bias=model_ref.proj_bias)
        out = model(inputs["q"], inputs["k"], inputs["v"])

        # Check forward equivalence
        self.assertTrue(torch.allclose(out, out_ref, atol=atol, rtol=rtol), "Forward outputs differ between torch reference and custom implementation")

        # Backward passes
        grad = torch.randn_like(out_ref)
        out_ref.backward(grad)
        out.backward(grad.to(self.device))

        # Check input gradient equivalence
        for inp in ["q", "k", "v"]:
            grad_ref = inputs_ref[inp].grad.cpu()
            grad = inputs[inp].grad.cpu()
            self.assertTrue(torch.allclose(grad, grad_ref, atol=atol, rtol=rtol), f"Input gradient mismatch in {inp}")

        # Check parameter gradient equivalence
        for p_ref, p in zip(model_ref.parameters(), model.parameters()):
            self.assertTrue(torch.allclose(p.grad, p_ref.grad, atol=atol, rtol=rtol), f"Parameter gradient mismatch: {type(p_ref).__name__}")

    # caution: multihead-implementation between full and neighborhood attention still seem to differ. tests are only done for single head
Boris Bonev's avatar
Boris Bonev committed
158
159
    @parameterized.expand(
        [
160
161
162
163
            # Format: [batch_size, channels, heads, in_shape, out_shape, grid_in, grid_out, atol, rtol]
            [4, 4, 1, (6, 12), (6, 12), "equiangular", "equiangular", 1e-2, 0],
            [4, 4, 1, (6, 12), (6, 12), "legendre-gauss", "legendre-gauss", 1e-2, 0],
            [4, 4, 1, (6, 12), (6, 12), "lobatto", "lobatto", 1e-2, 0],
Thorsten Kurth's avatar
Thorsten Kurth committed
164
165
        ],
        skip_on_empty=True,
Boris Bonev's avatar
Boris Bonev committed
166
    )
167
    def test_neighborhood_global_equivalence(self, batch_size, channels, heads, in_shape, out_shape, grid_in, grid_out, atol, rtol, verbose=False):
168
        """Tests numerical equivalence between the global spherical attention module and the neighborhood spherical attention module with the neighborhood set ot the whole sphere"""
Boris Bonev's avatar
Boris Bonev committed
169
170
171
172

        nlat_in, nlon_in = in_shape
        nlat_out, nlon_out = out_shape

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
        # Helper: create inputs
        inputs_ref = {
            "k": torch.randn(batch_size, channels, nlat_in, nlon_in, requires_grad=True, device=self.device, dtype=torch.float32),
            "v": torch.randn(batch_size, channels, nlat_in, nlon_in, requires_grad=True, device=self.device, dtype=torch.float32),
            "q": torch.randn(batch_size, channels, nlat_out, nlon_out, requires_grad=True, device=self.device, dtype=torch.float32),
        }
        inputs = {k: v.detach().clone().to(self.device).requires_grad_() for k, v in inputs_ref.items()}

        # reference input and model
        model_ref = AttentionS2(in_channels=channels, num_heads=heads, in_shape=in_shape, out_shape=out_shape, grid_in=grid_in, grid_out=grid_out, bias=False).to(self.device)

        # Device model and inputs
        model = NeighborhoodAttentionS2(
            in_channels=channels, num_heads=heads, in_shape=in_shape, out_shape=out_shape, grid_in=grid_in, grid_out=grid_out, bias=False, theta_cutoff=2 * torch.pi
        )

        # Synchronize parameters of model
        model.load_state_dict(model_ref.state_dict())
        model = model.to(self.device)
        for (name_ref, p_ref), (name, p) in zip(model_ref.named_parameters(), model.named_parameters()):
193
            self.assertTrue(torch.allclose(p_ref, p))
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

        # reference forward passes
        out_ref = model_ref(inputs_ref["q"], inputs_ref["k"], inputs_ref["v"])
        out = model(inputs["q"], inputs["k"], inputs["v"])

        # Check forward equivalence
        self.assertTrue(torch.allclose(out, out_ref, atol=atol, rtol=rtol), "Forward outputs differ between torch reference and custom implementation")

        # Backward passes
        grad = torch.randn_like(out_ref)
        out_ref.backward(grad)
        out.backward(grad.to(self.device))

        # Check input gradient equivalence
        for inp in ["q", "k", "v"]:
            grad_ref = inputs_ref[inp].grad
            grad = inputs[inp].grad
            self.assertTrue(torch.allclose(grad, grad_ref, atol=atol, rtol=rtol), f"Input gradient mismatch in {inp}")

        # Check parameter gradient equivalence - check only q,k, v weights
        for key in ["q_weights", "k_weights", "v_weights"]:
            grad_ref = getattr(model_ref, key).grad
            grad = getattr(model, key).grad
            self.assertTrue(torch.allclose(grad, grad_ref, atol=atol, rtol=rtol), f"Parameter gradient mismatch")
Boris Bonev's avatar
Boris Bonev committed
218
219


220
221
222
    @parameterized.expand(
        [
            # self attention
Thorsten Kurth's avatar
Thorsten Kurth committed
223
            [1, 256, 1, (361, 720), (361, 720), "equiangular", "equiangular", 1e-5, 1e-5],
Thorsten Kurth's avatar
Thorsten Kurth committed
224
225
        ],
        skip_on_empty=True,
226
    )
227
    @unittest.skipUnless((torch.cuda.is_available() and _cuda_extension_available), "skipping performance test because CUDA is not available")
228
    def test_perf(self, batch_size, channels, heads, in_shape, out_shape, grid_in, grid_out, atol, rtol, verbose=False):
229

230
231
232
233
234
        # skip this test if we are not running on GPU, it will take very long otherwise
        if self.device.type != "cuda":
            self.assertFalse(False)
            return
        
235
236
237
238
239
        # extract some parameters
        nlat_in, nlon_in = in_shape
        nlat_out, nlon_out = out_shape

        # TODO: this test seems hardcoded for GPU. Is this necessary?
Thorsten Kurth's avatar
Thorsten Kurth committed
240
        k_gpu = torch.randn(batch_size, channels, nlat_in, nlon_in, dtype=torch.float32, device=self.device)
241
        k_gpu.requires_grad = False
Thorsten Kurth's avatar
Thorsten Kurth committed
242
        v_gpu = torch.randn(batch_size, channels, nlat_in, nlon_in, dtype=torch.float32, device=self.device)
243
        v_gpu.requires_grad = False
Thorsten Kurth's avatar
Thorsten Kurth committed
244
        q_gpu = torch.randn(batch_size, channels, nlat_out, nlon_out, dtype=torch.float32, device=self.device)
245
246
247
248
249
250
251
252
        q_gpu.requires_grad = False

        # set up layers
        time_layer_setup_start = torch.cuda.Event(enable_timing=True)
        time_layer_setup_end = torch.cuda.Event(enable_timing=True)
        time_layer_setup_start.record()
        att_gpu = NeighborhoodAttentionS2(in_channels=channels, num_heads=heads,
                                          in_shape=in_shape, out_shape=out_shape,
Thorsten Kurth's avatar
Thorsten Kurth committed
253
                                          grid_in=grid_in, grid_out=grid_out, bias=True).to(self.device)
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
        time_layer_setup_end.record()
        torch.cuda.synchronize()

        # random weights
        with torch.no_grad():
            att_gpu.q_weights.normal_()
            att_gpu.k_weights.normal_()
            att_gpu.v_weights.normal_()
            att_gpu.q_bias.normal_()
            att_gpu.k_bias.normal_()
            att_gpu.v_bias.normal_()

            # time forward pass
            for i in range(2):
                # warmup
                out_gpu = att_gpu(q_gpu, k_gpu, v_gpu)
            time_forward_start = torch.cuda.Event(enable_timing=True)
            time_forward_end = torch.cuda.Event(enable_timing=True)
            time_forward_start.record()
            out_gpu = att_gpu(q_gpu, k_gpu, v_gpu)
            time_forward_end.record()
            torch.cuda.synchronize()
276
            elapsed_time = time_forward_start.elapsed_time(time_forward_end)
Thorsten Kurth's avatar
Thorsten Kurth committed
277
278
            if verbose:
                print(f"Forward execution time: {elapsed_time} ms")
Thorsten Kurth's avatar
Thorsten Kurth committed
279
            self.assertTrue(elapsed_time < _perf_test_thresholds["fwd_ms"])
280
281
282
283
284
285
286
287
288
289

        # sync weights:
        with torch.no_grad():
            att_gpu.q_weights.copy_(att_gpu.q_weights)
            att_gpu.k_weights.copy_(att_gpu.k_weights)
            att_gpu.v_weights.copy_(att_gpu.v_weights)
            att_gpu.q_bias.copy_(att_gpu.q_bias)
            att_gpu.k_bias.copy_(att_gpu.k_bias)
            att_gpu.v_bias.copy_(att_gpu.v_bias)

290
        q_gpu = q_gpu.detach().clone().to(self.device)
291
        q_gpu.requires_grad = True
292
        k_gpu = k_gpu.detach().clone().to(self.device)
293
        k_gpu.requires_grad = True
294
        v_gpu = v_gpu.detach().clone().to(self.device)
295
296
297
        v_gpu.requires_grad = True

        out_gpu = att_gpu(q_gpu, k_gpu, v_gpu)
Thorsten Kurth's avatar
Thorsten Kurth committed
298
        out_grad = torch.randn(out_gpu.shape, dtype=torch.float32, device=self.device)
299
300
301
302
303
304
305
306
307
308
309
        time_backward_start = torch.cuda.Event(enable_timing=True)
        time_backward_end = torch.cuda.Event(enable_timing=True)

        for i in range(2):
            # warmup
            out_gpu.backward(out_grad, retain_graph=True)

        time_backward_start.record()
        out_gpu.backward(out_grad)
        time_backward_end.record()
        torch.cuda.synchronize()
310
        elapsed_time = time_backward_start.elapsed_time(time_backward_end)
Thorsten Kurth's avatar
Thorsten Kurth committed
311
312
        if verbose:
            print(f"Backward execution time: {elapsed_time} ms")
Thorsten Kurth's avatar
Thorsten Kurth committed
313
        self.assertTrue(elapsed_time < _perf_test_thresholds["bwd_ms"])
314
315


Boris Bonev's avatar
Boris Bonev committed
316
317
if __name__ == "__main__":
    unittest.main()