"magic_pdf/rw/DiskReaderWriter.py" did not exist on "8f65af9f483002f32714e9205fc5d056f26ff7ba"
test_attention.py 10.1 KB
Newer Older
Boris Bonev's avatar
Boris Bonev committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# coding=utf-8

# SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

import unittest
from parameterized import parameterized

# import math
import numpy as np
import torch
38
import torch.nn as nn
Boris Bonev's avatar
Boris Bonev committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

# from torch.autograd import gradcheck
from torch_harmonics import AttentionS2, NeighborhoodAttentionS2

from torch_harmonics._neighborhood_attention import (
    _neighborhood_attention_s2_torch,
    _neighborhood_attention_s2_fwd_torch,
    _neighborhood_attention_s2_bwd_dv_torch,
    _neighborhood_attention_s2_bwd_dk_torch,
    _neighborhood_attention_s2_bwd_dq_torch,
)

# import custom C++/CUDA extensions
try:
    import attention_cuda_extension

    _cuda_extension_available = True
except ImportError as err:
    print(f"Warning: Couldn't Import cuda attention: {err}")
    attention_cuda_extension = None
    _cuda_extension_available = False


62
class TestNeighborhoodAttentionS2(unittest.TestCase):
Boris Bonev's avatar
Boris Bonev committed
63
64
65
66
67
    def setUp(self):
        if torch.cuda.is_available():
            self.device = torch.device("cuda:0")
            torch.cuda.set_device(self.device.index)
            torch.cuda.manual_seed(333)
68
            torch.manual_seed(333)
Boris Bonev's avatar
Boris Bonev committed
69
70
        else:
            self.device = torch.device("cpu")
71
            torch.manual_seed(333)
Boris Bonev's avatar
Boris Bonev committed
72
73
74

    @parameterized.expand(
        [
75
76
77
78
79
80
            # Format: [batch_size, channels, heads, in_shape, out_shape, grid_in, grid_out, atol, rtol]
            [4, 4, 1, (6, 12), (6, 12), "equiangular", "equiangular", 1e-5, 1e-3],
            [4, 4, 2, (6, 12), (6, 12), "equiangular", "equiangular", 1e-5, 1e-3],
            [4, 4, 4, (6, 12), (6, 12), "equiangular", "equiangular", 1e-5, 1e-3],
            [4, 4, 1, (6, 12), (6, 12), "legendre-gauss", "legendre-gauss", 1e-5, 1e-3],
            [4, 4, 1, (6, 12), (6, 12), "lobatto", "lobatto", 1e-5, 1e-3],
Boris Bonev's avatar
Boris Bonev committed
81
82
        ]
    )
83
84
    def test_custom_implementation(self, batch_size, channels, heads, in_shape, out_shape, grid_in, grid_out, atol, rtol, verbose=True):
        """Tests numerical equivalence between the custom (CUDA) implementation and the reference torch implementation"""
Boris Bonev's avatar
Boris Bonev committed
85
86
87
88

        nlat_in, nlon_in = in_shape
        nlat_out, nlon_out = out_shape

89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
        # Helper: create inputs
        inputs_ref = {
            "k": torch.randn(batch_size, channels, nlat_in, nlon_in, requires_grad=True, device=self.device, dtype=torch.float32),
            "v": torch.randn(batch_size, channels, nlat_in, nlon_in, requires_grad=True, device=self.device, dtype=torch.float32),
            "q": torch.randn(batch_size, channels, nlat_out, nlon_out, requires_grad=True, device=self.device, dtype=torch.float32),
        }
        inputs = {k: v.detach().clone().to(self.device).requires_grad_() for k, v in inputs_ref.items()}

        # reference input and model
        model_ref = NeighborhoodAttentionS2(in_channels=channels, num_heads=heads, in_shape=in_shape, out_shape=out_shape, grid_in=grid_in, grid_out=grid_out, bias=True).to(
            self.device
        )

        # Device model and inputs
        model = NeighborhoodAttentionS2(in_channels=channels, num_heads=heads, in_shape=in_shape, out_shape=out_shape, grid_in=grid_in, grid_out=grid_out, bias=True)

        # Synchronize parameters of model
        model.load_state_dict(model_ref.state_dict())
        model = model.to(self.device)
        for (name_ref, p_ref), (name, p) in zip(model_ref.named_parameters(), model.named_parameters()):
            assert torch.allclose(p_ref, p), f"Parameter mismatch: {name_ref} vs {name}"

        # reference forward passes
        out_ref = _neighborhood_attention_s2_torch(
            inputs_ref["k"],
            inputs_ref["v"],
            inputs_ref["q"] * model_ref.scale,
            model_ref.k_weights,
            model_ref.v_weights,
            model_ref.q_weights,
            model_ref.k_bias,
            model_ref.v_bias,
            model_ref.q_bias,
            model_ref.quad_weights,
            model_ref.psi_col_idx,
            model_ref.psi_roff_idx,
            model_ref.num_heads,
            model_ref.nlon_in,
            model_ref.nlat_out,
            model_ref.nlon_out,
        )
        out_ref = nn.functional.conv2d(out_ref, model_ref.proj_weights, bias=model_ref.proj_bias)
        out = model(inputs["q"], inputs["k"], inputs["v"])

        # Check forward equivalence
        self.assertTrue(torch.allclose(out, out_ref, atol=atol, rtol=rtol), "Forward outputs differ between torch reference and custom implementation")

        # Backward passes
        grad = torch.randn_like(out_ref)
        out_ref.backward(grad)
        out.backward(grad.to(self.device))

        # Check input gradient equivalence
        for inp in ["q", "k", "v"]:
            grad_ref = inputs_ref[inp].grad.cpu()
            grad = inputs[inp].grad.cpu()
            self.assertTrue(torch.allclose(grad, grad_ref, atol=atol, rtol=rtol), f"Input gradient mismatch in {inp}")

        # Check parameter gradient equivalence
        for p_ref, p in zip(model_ref.parameters(), model.parameters()):
            self.assertTrue(torch.allclose(p.grad, p_ref.grad, atol=atol, rtol=rtol), f"Parameter gradient mismatch: {type(p_ref).__name__}")

    # caution: multihead-implementation between full and neighborhood attention still seem to differ. tests are only done for single head
Boris Bonev's avatar
Boris Bonev committed
152
153
    @parameterized.expand(
        [
154
155
156
157
158
159
            # Format: [batch_size, channels, heads, in_shape, out_shape, grid_in, grid_out, atol, rtol]
            [4, 4, 1, (6, 12), (6, 12), "equiangular", "equiangular", 1e-2, 0],
            # [4, 4, 2, (6, 12), (6, 12), "equiangular", "equiangular", 1e-5, 1e-3],
            # [4, 4, 4, (6, 12), (6, 12), "equiangular", "equiangular", 1e-5, 1e-3],
            [4, 4, 1, (6, 12), (6, 12), "legendre-gauss", "legendre-gauss", 1e-2, 0],
            [4, 4, 1, (6, 12), (6, 12), "lobatto", "lobatto", 1e-2, 0],
Boris Bonev's avatar
Boris Bonev committed
160
161
        ]
    )
162
163
    def test_neighborhood_global_equivalence(self, batch_size, channels, heads, in_shape, out_shape, grid_in, grid_out, atol, rtol, verbose=True):
        """Tests numerical equivalence between the global spherical attention module and the neighborhood spherical attention module with the neighborhood set ot the whole sphere"""
Boris Bonev's avatar
Boris Bonev committed
164
165
166
167

        nlat_in, nlon_in = in_shape
        nlat_out, nlon_out = out_shape

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
        # Helper: create inputs
        inputs_ref = {
            "k": torch.randn(batch_size, channels, nlat_in, nlon_in, requires_grad=True, device=self.device, dtype=torch.float32),
            "v": torch.randn(batch_size, channels, nlat_in, nlon_in, requires_grad=True, device=self.device, dtype=torch.float32),
            "q": torch.randn(batch_size, channels, nlat_out, nlon_out, requires_grad=True, device=self.device, dtype=torch.float32),
        }
        inputs = {k: v.detach().clone().to(self.device).requires_grad_() for k, v in inputs_ref.items()}

        # reference input and model
        model_ref = AttentionS2(in_channels=channels, num_heads=heads, in_shape=in_shape, out_shape=out_shape, grid_in=grid_in, grid_out=grid_out, bias=False).to(self.device)

        # Device model and inputs
        model = NeighborhoodAttentionS2(
            in_channels=channels, num_heads=heads, in_shape=in_shape, out_shape=out_shape, grid_in=grid_in, grid_out=grid_out, bias=False, theta_cutoff=2 * torch.pi
        )

        # Synchronize parameters of model
        model.load_state_dict(model_ref.state_dict())
        model = model.to(self.device)
        for (name_ref, p_ref), (name, p) in zip(model_ref.named_parameters(), model.named_parameters()):
            assert torch.allclose(p_ref, p), f"Parameter mismatch: {name_ref} vs {name}"

        # reference forward passes
        out_ref = model_ref(inputs_ref["q"], inputs_ref["k"], inputs_ref["v"])
        out = model(inputs["q"], inputs["k"], inputs["v"])

        # Check forward equivalence
        self.assertTrue(torch.allclose(out, out_ref, atol=atol, rtol=rtol), "Forward outputs differ between torch reference and custom implementation")

        # Backward passes
        grad = torch.randn_like(out_ref)
        out_ref.backward(grad)
        out.backward(grad.to(self.device))

        # Check input gradient equivalence
        for inp in ["q", "k", "v"]:
            grad_ref = inputs_ref[inp].grad
            grad = inputs[inp].grad
            self.assertTrue(torch.allclose(grad, grad_ref, atol=atol, rtol=rtol), f"Input gradient mismatch in {inp}")

        # Check parameter gradient equivalence - check only q,k, v weights
        for key in ["q_weights", "k_weights", "v_weights"]:
            grad_ref = getattr(model_ref, key).grad
            grad = getattr(model, key).grad
            self.assertTrue(torch.allclose(grad, grad_ref, atol=atol, rtol=rtol), f"Parameter gradient mismatch")
Boris Bonev's avatar
Boris Bonev committed
213
214
215
216


if __name__ == "__main__":
    unittest.main()