test_sht.py 9.09 KB
Newer Older
Boris Bonev's avatar
Boris Bonev committed
1
2
3
4
# coding=utf-8

# SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
Boris Bonev's avatar
Boris Bonev committed
5
#
Boris Bonev's avatar
Boris Bonev committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

import unittest
33
from parameterized import parameterized, parameterized_class
Boris Bonev's avatar
Boris Bonev committed
34
import math
Boris Bonev's avatar
Boris Bonev committed
35
import torch
Boris Bonev's avatar
Boris Bonev committed
36
from torch.autograd import gradcheck
Boris Bonev's avatar
Boris Bonev committed
37
import torch_harmonics as th
Boris Bonev's avatar
Boris Bonev committed
38

39
40
41
42
43
_devices = [(torch.device("cpu"),)]
if torch.cuda.is_available():
    _devices.append((torch.device("cuda"),))


Boris Bonev's avatar
Boris Bonev committed
44
45
46
class TestLegendrePolynomials(unittest.TestCase):

    def setUp(self):
Thorsten Kurth's avatar
Thorsten Kurth committed
47
        self.cml = lambda m, l: math.sqrt((2 * l + 1) / 4 / math.pi) * math.sqrt(math.factorial(l - m) / math.factorial(l + m))
Boris Bonev's avatar
Boris Bonev committed
48
49
50
51
        self.pml = dict()

        # preparing associated Legendre Polynomials (These include the Condon-Shortley phase)
        # for reference see e.g. https://en.wikipedia.org/wiki/Associated_Legendre_polynomials
Thorsten Kurth's avatar
Thorsten Kurth committed
52
        self.pml[(0, 0)] = lambda x: torch.ones_like(x)
Boris Bonev's avatar
Boris Bonev committed
53
        self.pml[(0, 1)] = lambda x: x
Thorsten Kurth's avatar
Thorsten Kurth committed
54
        self.pml[(1, 1)] = lambda x: -torch.sqrt(1.0 - x**2)
Boris Bonev's avatar
Boris Bonev committed
55
        self.pml[(0, 2)] = lambda x: 0.5 * (3 * x**2 - 1)
Thorsten Kurth's avatar
Thorsten Kurth committed
56
        self.pml[(1, 2)] = lambda x: -3 * x * torch.sqrt(1.0 - x**2)
Boris Bonev's avatar
Boris Bonev committed
57
58
        self.pml[(2, 2)] = lambda x: 3 * (1 - x**2)
        self.pml[(0, 3)] = lambda x: 0.5 * (5 * x**3 - 3 * x)
Thorsten Kurth's avatar
Thorsten Kurth committed
59
        self.pml[(1, 3)] = lambda x: 1.5 * (1 - 5 * x**2) * torch.sqrt(1.0 - x**2)
Boris Bonev's avatar
Boris Bonev committed
60
        self.pml[(2, 3)] = lambda x: 15 * x * (1 - x**2)
Thorsten Kurth's avatar
Thorsten Kurth committed
61
        self.pml[(3, 3)] = lambda x: -15 * torch.sqrt(1.0 - x**2) ** 3
Boris Bonev's avatar
Boris Bonev committed
62
63
64

        self.lmax = self.mmax = 4

Boris Bonev's avatar
Boris Bonev committed
65
66
        self.tol = 1e-9

Thorsten Kurth's avatar
Thorsten Kurth committed
67
68
69
    def test_legendre(self, verbose=False):
        if verbose:
            print("Testing computation of associated Legendre polynomials")
Boris Bonev's avatar
Boris Bonev committed
70

Thorsten Kurth's avatar
Thorsten Kurth committed
71
        t = torch.linspace(0, 1, 100, dtype=torch.float64)
Boris Bonev's avatar
Boris Bonev committed
72
        vdm = th.legendre.legpoly(self.mmax, self.lmax, t)
Boris Bonev's avatar
Boris Bonev committed
73
74

        for l in range(self.lmax):
Boris Bonev's avatar
Boris Bonev committed
75
76
            for m in range(l + 1):
                diff = vdm[m, l] / self.cml(m, l) - self.pml[(m, l)](t)
Boris Bonev's avatar
Boris Bonev committed
77
                self.assertTrue(diff.max() <= self.tol)
Boris Bonev's avatar
Boris Bonev committed
78
79


80
@parameterized_class(("device"), _devices)
Boris Bonev's avatar
Boris Bonev committed
81
82
83
class TestSphericalHarmonicTransform(unittest.TestCase):

    def setUp(self):
84
85
86
        torch.manual_seed(333)
        if self.device.type == "cuda":
            torch.cuda.manual_seed(333)
Boris Bonev's avatar
Boris Bonev committed
87
88
89

    @parameterized.expand(
        [
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
            # even-even
            [32, 64, 32, "ortho", "equiangular", 1e-9, False],
            [32, 64, 32, "ortho", "legendre-gauss", 1e-9, False],
            [32, 64, 32, "ortho", "lobatto", 1e-9, False],
            [32, 64, 32, "four-pi", "equiangular", 1e-9, False],
            [32, 64, 32, "four-pi", "legendre-gauss", 1e-9, False],
            [32, 64, 32, "four-pi", "lobatto", 1e-9, False],
            [32, 64, 32, "schmidt", "equiangular", 1e-9, False],
            [32, 64, 32, "schmidt", "legendre-gauss", 1e-9, False],
            [32, 64, 32, "schmidt", "lobatto", 1e-9, False],
            # odd-even
            [33, 64, 32, "ortho", "equiangular", 1e-9, False],
            [33, 64, 32, "ortho", "legendre-gauss", 1e-9, False],
            [33, 64, 32, "ortho", "lobatto", 1e-9, False],
	    [33, 64, 32, "four-pi", "equiangular", 1e-9, False],
            [33, 64, 32, "four-pi", "legendre-gauss", 1e-9, False],
            [33, 64, 32, "four-pi", "lobatto", 1e-9, False],
            [33, 64, 32, "schmidt", "equiangular", 1e-9, False],
            [33, 64, 32, "schmidt", "legendre-gauss", 1e-9, False],
            [33, 64, 32, "schmidt", "lobatto", 1e-9, False],
Boris Bonev's avatar
Boris Bonev committed
110
111
        ]
    )
Thorsten Kurth's avatar
Thorsten Kurth committed
112
113
114
    def test_sht(self, nlat, nlon, batch_size, norm, grid, tol, verbose):
        if verbose:
            print(f"Testing real-valued SHT on {nlat}x{nlon} {grid} grid with {norm} normalization on {self.device.type} device")
Boris Bonev's avatar
Boris Bonev committed
115
116

        testiters = [1, 2, 4, 8, 16]
Boris Bonev's avatar
Boris Bonev committed
117
118
        if grid == "equiangular":
            mmax = nlat // 2
119
120
        elif grid == "lobatto":
            mmax = nlat - 1
Boris Bonev's avatar
Boris Bonev committed
121
122
        else:
            mmax = nlat
Boris Bonev's avatar
Boris Bonev committed
123
124
        lmax = mmax

Boris Bonev's avatar
Boris Bonev committed
125
126
        sht = th.RealSHT(nlat, nlon, mmax=mmax, lmax=lmax, grid=grid, norm=norm).to(self.device)
        isht = th.InverseRealSHT(nlat, nlon, mmax=mmax, lmax=lmax, grid=grid, norm=norm).to(self.device)
Boris Bonev's avatar
Boris Bonev committed
127

Boris Bonev's avatar
Boris Bonev committed
128
129
130
131
        with torch.no_grad():
            coeffs = torch.zeros(batch_size, lmax, mmax, device=self.device, dtype=torch.complex128)
            coeffs[:, :lmax, :mmax] = torch.randn(batch_size, lmax, mmax, device=self.device, dtype=torch.complex128)
            signal = isht(coeffs)
Boris Bonev's avatar
Boris Bonev committed
132

Boris Bonev's avatar
Boris Bonev committed
133
        # testing error accumulation
Boris Bonev's avatar
Boris Bonev committed
134
        for iter in testiters:
Boris Bonev's avatar
Boris Bonev committed
135
            with self.subTest(i=iter):
Thorsten Kurth's avatar
Thorsten Kurth committed
136
137
                if verbose:
                    print(f"{iter} iterations of batchsize {batch_size}:")
Boris Bonev's avatar
Boris Bonev committed
138
139
140

                base = signal

141
                for _ in range(iter):
Boris Bonev's avatar
Boris Bonev committed
142
                    base = isht(sht(base))
Boris Bonev's avatar
Boris Bonev committed
143
144

                err = torch.mean(torch.norm(base - signal, p="fro", dim=(-1, -2)) / torch.norm(signal, p="fro", dim=(-1, -2)))
Thorsten Kurth's avatar
Thorsten Kurth committed
145
146
                if verbose:
                    print(f"final relative error: {err.item()}")
Boris Bonev's avatar
Boris Bonev committed
147
148
                self.assertTrue(err.item() <= tol)

Boris Bonev's avatar
Boris Bonev committed
149
150
    @parameterized.expand(
        [
151
            # even-even
Thorsten Kurth's avatar
Thorsten Kurth committed
152
153
            [12, 24, 2, "ortho", "equiangular", 1e-5, False],
            [12, 24, 2, "ortho", "legendre-gauss", 1e-5, False],
154
            [12, 24, 2, "ortho", "lobatto", 1e-5, False],
Thorsten Kurth's avatar
Thorsten Kurth committed
155
156
            [12, 24, 2, "four-pi", "equiangular", 1e-5, False],
            [12, 24, 2, "four-pi", "legendre-gauss", 1e-5, False],
157
            [12, 24, 2, "four-pi", "lobatto", 1e-5, False],
Thorsten Kurth's avatar
Thorsten Kurth committed
158
159
            [12, 24, 2, "schmidt", "equiangular", 1e-5, False],
            [12, 24, 2, "schmidt", "legendre-gauss", 1e-5, False],
160
            [12, 24, 2, "schmidt", "lobatto", 1e-5, False],
161
            # odd-even
Thorsten Kurth's avatar
Thorsten Kurth committed
162
163
            [15, 30, 2, "ortho", "equiangular", 1e-5, False],
            [15, 30, 2, "ortho", "legendre-gauss", 1e-5, False],
164
            [15, 30, 2, "ortho", "lobatto", 1e-5, False],
Thorsten Kurth's avatar
Thorsten Kurth committed
165
166
            [15, 30, 2, "four-pi", "equiangular", 1e-5, False],
            [15, 30, 2, "four-pi", "legendre-gauss", 1e-5, False],
167
            [15, 30, 2, "four-pi", "lobatto", 1e-5, False],
Thorsten Kurth's avatar
Thorsten Kurth committed
168
169
            [15, 30, 2, "schmidt", "equiangular", 1e-5, False],
            [15, 30, 2, "schmidt", "legendre-gauss", 1e-5, False],
170
            [15, 30, 2, "schmidt", "lobatto", 1e-5, False],
Boris Bonev's avatar
Boris Bonev committed
171
172
        ]
    )
Thorsten Kurth's avatar
Thorsten Kurth committed
173
174
175
    def test_sht_grads(self, nlat, nlon, batch_size, norm, grid, tol, verbose):
        if verbose:
            print(f"Testing gradients of real-valued SHT on {nlat}x{nlon} {grid} grid with {norm} normalization")
Boris Bonev's avatar
Boris Bonev committed
176
177
178

        if grid == "equiangular":
            mmax = nlat // 2
179
180
        elif grid == "lobatto":
            mmax = nlat - 1
Boris Bonev's avatar
Boris Bonev committed
181
182
        else:
            mmax = nlat
Boris Bonev's avatar
Boris Bonev committed
183
184
        lmax = mmax

Boris Bonev's avatar
Boris Bonev committed
185
186
        sht = th.RealSHT(nlat, nlon, mmax=mmax, lmax=lmax, grid=grid, norm=norm).to(self.device)
        isht = th.InverseRealSHT(nlat, nlon, mmax=mmax, lmax=lmax, grid=grid, norm=norm).to(self.device)
Boris Bonev's avatar
Boris Bonev committed
187

Boris Bonev's avatar
Boris Bonev committed
188
189
190
191
        with torch.no_grad():
            coeffs = torch.zeros(batch_size, lmax, mmax, device=self.device, dtype=torch.complex128)
            coeffs[:, :lmax, :mmax] = torch.randn(batch_size, lmax, mmax, device=self.device, dtype=torch.complex128)
            signal = isht(coeffs)
Boris Bonev's avatar
Boris Bonev committed
192
193

        # test the sht
Boris Bonev's avatar
Boris Bonev committed
194
        grad_input = torch.randn_like(signal, requires_grad=True)
Boris Bonev's avatar
Boris Bonev committed
195
196
197
198
199
200
201
        err_handle = lambda x: torch.mean(torch.norm(sht(x) - coeffs, p="fro", dim=(-1, -2)) / torch.norm(coeffs, p="fro", dim=(-1, -2)))
        test_result = gradcheck(err_handle, grad_input, eps=1e-6, atol=tol)
        self.assertTrue(test_result)

        # test the isht
        grad_input = torch.randn_like(coeffs, requires_grad=True)
        err_handle = lambda x: torch.mean(torch.norm(isht(x) - signal, p="fro", dim=(-1, -2)) / torch.norm(signal, p="fro", dim=(-1, -2)))
Boris Bonev's avatar
Boris Bonev committed
202
        test_result = gradcheck(err_handle, grad_input, eps=1e-6, atol=tol)
Boris Bonev's avatar
Boris Bonev committed
203
        self.assertTrue(test_result)
Boris Bonev's avatar
Boris Bonev committed
204
205


Boris Bonev's avatar
Boris Bonev committed
206
207
if __name__ == "__main__":
    unittest.main()