test_convolution.py 13.8 KB
Newer Older
Boris Bonev's avatar
Boris Bonev committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# coding=utf-8

# SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

import unittest
from parameterized import parameterized
from functools import partial
import math
import numpy as np
import torch
from torch.autograd import gradcheck
from torch_harmonics import *

Boris Bonev's avatar
Boris Bonev committed
41
from torch_harmonics.quadrature import _precompute_grid, _precompute_latitudes
Boris Bonev's avatar
Boris Bonev committed
42

Boris Bonev's avatar
Boris Bonev committed
43
def _compute_vals_isotropic(r: torch.Tensor, phi: torch.Tensor, nr: int, r_cutoff: float):
Boris Bonev's avatar
Boris Bonev committed
44
45
46
47
    """
    helper routine to compute the values of the isotropic kernel densely
    """

Boris Bonev's avatar
Boris Bonev committed
48
49
50
51
    kernel_size = (nr // 2) + nr % 2
    ikernel = torch.arange(kernel_size).reshape(-1, 1, 1)
    dr = 2 * r_cutoff  / (nr + 1)

Boris Bonev's avatar
Boris Bonev committed
52
    # compute the support
Boris Bonev's avatar
Boris Bonev committed
53
54
55
56
    if nr % 2 == 1:
        ir = ikernel * dr
    else:
        ir = (ikernel + 0.5) * dr
Boris Bonev's avatar
Boris Bonev committed
57
58

    vals = torch.where(
Boris Bonev's avatar
Boris Bonev committed
59
60
        ((r - ir).abs() <= dr) & (r <= r_cutoff),
        (1 - (r - ir).abs() / dr),
Boris Bonev's avatar
Boris Bonev committed
61
62
        0,
    )
Boris Bonev's avatar
Boris Bonev committed
63

Boris Bonev's avatar
Boris Bonev committed
64
65
    return vals

Boris Bonev's avatar
Boris Bonev committed
66
67

def _compute_vals_anisotropic(r: torch.Tensor, phi: torch.Tensor, nr: int, nphi: int, r_cutoff: float):
Boris Bonev's avatar
Boris Bonev committed
68
69
70
71
    """
    helper routine to compute the values of the anisotropic kernel densely
    """

Boris Bonev's avatar
Boris Bonev committed
72
    kernel_size = (nr // 2) * nphi + nr % 2
Boris Bonev's avatar
Boris Bonev committed
73
    ikernel = torch.arange(kernel_size).reshape(-1, 1, 1)
Boris Bonev's avatar
Boris Bonev committed
74
75
    dr = 2 * r_cutoff  / (nr + 1)
    dphi = 2.0 * math.pi / nphi
Boris Bonev's avatar
Boris Bonev committed
76

Boris Bonev's avatar
Boris Bonev committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
    # disambiguate even and uneven cases and compute the support
    if nr % 2 == 1:
        ir = ((ikernel - 1) // nphi + 1) * dr
        iphi = ((ikernel - 1) % nphi) * dphi
    else:
        ir = (ikernel // nphi + 0.5) * dr
        iphi = (ikernel % nphi) * dphi

    # compute the value of the filter
    if nr % 2 == 1:
        # find the indices where the rotated position falls into the support of the kernel
        cond_r = ((r - ir).abs() <= dr) & (r <= r_cutoff)
        cond_phi = ((phi - iphi).abs() <= dphi) | ((2 * math.pi - (phi - iphi).abs()) <= dphi)
        r_vals = torch.where(cond_r, (1 - (r - ir).abs() / dr) , 0.0)
        phi_vals = torch.where(cond_phi, (1 - torch.minimum((phi - iphi).abs(), (2 * math.pi - (phi - iphi).abs())) / dphi), 0.0)
        vals = torch.where(ikernel > 0, r_vals * phi_vals, r_vals)
    else:
        # find the indices where the rotated position falls into the support of the kernel
        cond_r = ((r - ir).abs() <= dr) & (r <= r_cutoff)
        cond_phi = ((phi - iphi).abs() <= dphi) | ((2 * math.pi - (phi - iphi).abs()) <= dphi)
        r_vals = torch.where(cond_r, (1 - (r - ir).abs() / dr), 0.0)
        phi_vals = torch.where(cond_phi, (1 - torch.minimum((phi - iphi).abs(), (2 * math.pi - (phi - iphi).abs())) / dphi), 0.0)
        vals = r_vals * phi_vals

        # in the even case, the inner casis functions overlap into areas with a negative areas
        rn = - r
        phin = torch.where(phi + math.pi >= 2*math.pi, phi - math.pi, phi + math.pi)
        cond_rn = ((rn - ir).abs() <= dr) & (rn <= r_cutoff)
        cond_phin = ((phin - iphi).abs() <= dphi) | ((2 * math.pi - (phin - iphi).abs()) <= dphi)
        rn_vals = torch.where(cond_rn, (1 - (rn - ir).abs() / dr), 0.0)
        phin_vals = torch.where(cond_phin, (1 - torch.minimum((phin - iphi).abs(), (2 * math.pi - (phin - iphi).abs())) / dphi), 0.0)
        vals += rn_vals * phin_vals
Boris Bonev's avatar
Boris Bonev committed
109
110
111

    return vals

112
def _normalize_convolution_tensor_dense(psi, quad_weights, transpose_normalization=False, merge_quadrature=False, eps=1e-9):
Boris Bonev's avatar
Boris Bonev committed
113
114
115
116
117
118
119
120
121
122
123
    """
    Discretely normalizes the convolution tensor.
    """

    kernel_size, nlat_out, nlon_out, nlat_in, nlon_in = psi.shape
    scale_factor = float(nlon_in // nlon_out)

    if transpose_normalization:
        # the normalization is not quite symmetric due to the compressed way psi is stored in the main code
        # look at the normalization code in the actual implementation
        psi_norm = torch.sum(quad_weights.reshape(1, -1, 1, 1, 1) * psi[:,:,:1], dim=(1, 4), keepdim=True) / scale_factor
124
125
        if merge_quadrature:
            psi = quad_weights.reshape(1, -1, 1, 1, 1) * psi
Boris Bonev's avatar
Boris Bonev committed
126
127
    else:
        psi_norm = torch.sum(quad_weights.reshape(1, 1, 1, -1, 1) * psi, dim=(3, 4), keepdim=True)
128
129
        if merge_quadrature:
            psi = quad_weights.reshape(1, 1, 1, -1, 1) * psi
Boris Bonev's avatar
Boris Bonev committed
130
131
132
133

    return psi / (psi_norm + eps)


134
def _precompute_convolution_tensor_dense(in_shape, out_shape, kernel_shape, quad_weights, grid_in="equiangular", grid_out="equiangular", theta_cutoff=0.01 * math.pi, transpose_normalization=False, merge_quadrature=False):
Boris Bonev's avatar
Boris Bonev committed
135
136
137
138
139
140
141
    """
    Helper routine to compute the convolution Tensor in a dense fashion
    """

    assert len(in_shape) == 2
    assert len(out_shape) == 2

Boris Bonev's avatar
Boris Bonev committed
142
143
    quad_weights = quad_weights.reshape(-1, 1)

Boris Bonev's avatar
Boris Bonev committed
144
    if len(kernel_shape) == 1:
Boris Bonev's avatar
Boris Bonev committed
145
146
        kernel_handle = partial(_compute_vals_isotropic, nr=kernel_shape[0], r_cutoff=theta_cutoff)
        kernel_size = math.ceil( kernel_shape[0] / 2)
Boris Bonev's avatar
Boris Bonev committed
147
    elif len(kernel_shape) == 2:
Boris Bonev's avatar
Boris Bonev committed
148
149
        kernel_handle = partial(_compute_vals_anisotropic, nr=kernel_shape[0], nphi=kernel_shape[1], r_cutoff=theta_cutoff)
        kernel_size = (kernel_shape[0] // 2) * kernel_shape[1] + kernel_shape[0] % 2
Boris Bonev's avatar
Boris Bonev committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
    else:
        raise ValueError("kernel_shape should be either one- or two-dimensional.")

    nlat_in, nlon_in = in_shape
    nlat_out, nlon_out = out_shape

    lats_in, _ = quadrature._precompute_latitudes(nlat_in, grid=grid_in)
    lats_in = torch.from_numpy(lats_in).float()
    lats_out, _ = quadrature._precompute_latitudes(nlat_out, grid=grid_out)
    lats_out = torch.from_numpy(lats_out).float()  # array for accumulating non-zero indices

    # compute the phi differences. We need to make the linspace exclusive to not double the last point
    lons_in = torch.linspace(0, 2 * math.pi, nlon_in + 1)[:-1]
    lons_out = torch.linspace(0, 2 * math.pi, nlon_out + 1)[:-1]

    out = torch.zeros(kernel_size, nlat_out, nlon_out, nlat_in, nlon_in)

    for t in range(nlat_out):
        for p in range(nlon_out):
            alpha = -lats_out[t]
            beta = lons_in - lons_out[p]
            gamma = lats_in.reshape(-1, 1)

            # compute latitude of the rotated position
            z = -torch.cos(beta) * torch.sin(alpha) * torch.sin(gamma) + torch.cos(alpha) * torch.cos(gamma)

            # compute cartesian coordinates of the rotated position
            x = torch.cos(alpha) * torch.cos(beta) * torch.sin(gamma) + torch.cos(gamma) * torch.sin(alpha)
            y = torch.sin(beta) * torch.sin(gamma)

            # normalize instead of clipping to ensure correct range
            norm = torch.sqrt(x * x + y * y + z * z)
            x = x / norm
            y = y / norm
            z = z / norm

            # compute spherical coordinates
            theta = torch.arccos(z)
            phi = torch.arctan2(y, x) + torch.pi

            # find the indices where the rotated position falls into the support of the kernel
            out[:, t, p, :, :] = kernel_handle(theta, phi)

Boris Bonev's avatar
Boris Bonev committed
193
    # take care of normalization
194
    out = _normalize_convolution_tensor_dense(out, quad_weights=quad_weights, transpose_normalization=transpose_normalization, merge_quadrature=merge_quadrature)
Boris Bonev's avatar
Boris Bonev committed
195

Boris Bonev's avatar
Boris Bonev committed
196
197
198
199
200
201
    return out


class TestDiscreteContinuousConvolution(unittest.TestCase):
    def setUp(self):
        if torch.cuda.is_available():
202
203
204
            self.device = torch.device("cuda:0")
            torch.cuda.set_device(self.device.index)
            torch.cuda.manual_seed(333)
Boris Bonev's avatar
Boris Bonev committed
205
206
        else:
            self.device = torch.device("cpu")
Boris Bonev's avatar
Boris Bonev committed
207

208
        torch.manual_seed(333)
Boris Bonev's avatar
Boris Bonev committed
209

Boris Bonev's avatar
Boris Bonev committed
210
211
212
    @parameterized.expand(
        [
            # regular convolution
Boris Bonev's avatar
Boris Bonev committed
213
214
215
216
217
218
219
220
221
            [8, 4, 2, (16, 32), (16, 32), [3], "equiangular", "equiangular", False, 1e-4],
            [8, 4, 2, (16, 32), (8, 16), [5], "equiangular", "equiangular", False, 1e-4],
            [8, 4, 2, (16, 32), (8, 16), [3, 3], "equiangular", "equiangular", False, 1e-4],
            [8, 4, 2, (16, 32), (8, 16), [4, 3], "equiangular", "equiangular", False, 1e-4],
            [8, 4, 2, (16, 24), (8, 8), [3], "equiangular", "equiangular", False, 1e-4],
            [8, 4, 2, (18, 36), (6, 12), [7], "equiangular", "equiangular", False, 1e-4],
            [8, 4, 2, (16, 32), (8, 16), [5], "equiangular", "legendre-gauss", False, 1e-4],
            [8, 4, 2, (16, 32), (8, 16), [5], "legendre-gauss", "equiangular", False, 1e-4],
            [8, 4, 2, (16, 32), (8, 16), [5], "legendre-gauss", "legendre-gauss", False, 1e-4],
Boris Bonev's avatar
Boris Bonev committed
222
            # transpose convolution
Boris Bonev's avatar
Boris Bonev committed
223
224
225
226
227
228
229
230
231
            [8, 4, 2, (16, 32), (16, 32), [3], "equiangular", "equiangular", True, 1e-4],
            [8, 4, 2, (8, 16), (16, 32), [5], "equiangular", "equiangular", True, 1e-4],
            [8, 4, 2, (8, 16), (16, 32), [3, 3], "equiangular", "equiangular", True, 1e-4],
            [8, 4, 2, (8, 16), (16, 32), [4, 3], "equiangular", "equiangular", True, 1e-4],
            [8, 4, 2, (8, 8), (16, 24), [3], "equiangular", "equiangular", True, 1e-4],
            [8, 4, 2, (6, 12), (18, 36), [7], "equiangular", "equiangular", True, 1e-4],
            [8, 4, 2, (8, 16), (16, 32), [5], "equiangular", "legendre-gauss", True, 1e-4],
            [8, 4, 2, (8, 16), (16, 32), [5], "legendre-gauss", "equiangular", True, 1e-4],
            [8, 4, 2, (8, 16), (16, 32), [5], "legendre-gauss", "legendre-gauss", True, 1e-4],
Boris Bonev's avatar
Boris Bonev committed
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
        ]
    )
    def test_disco_convolution(
        self,
        batch_size,
        in_channels,
        out_channels,
        in_shape,
        out_shape,
        kernel_shape,
        grid_in,
        grid_out,
        transpose,
        tol,
    ):
Boris Bonev's avatar
Boris Bonev committed
247
248
249
250
251
        nlat_in, nlon_in = in_shape
        nlat_out, nlon_out = out_shape

        theta_cutoff = (kernel_shape[0] + 1) / 2 * torch.pi / float(nlat_out - 1)

Boris Bonev's avatar
Boris Bonev committed
252
253
254
255
256
257
258
259
260
261
262
        Conv = DiscreteContinuousConvTransposeS2 if transpose else DiscreteContinuousConvS2
        conv = Conv(
            in_channels,
            out_channels,
            in_shape,
            out_shape,
            kernel_shape,
            groups=1,
            grid_in=grid_in,
            grid_out=grid_out,
            bias=False,
Boris Bonev's avatar
Boris Bonev committed
263
            theta_cutoff=theta_cutoff
Boris Bonev's avatar
Boris Bonev committed
264
265
        ).to(self.device)

Boris Bonev's avatar
Boris Bonev committed
266
267
        _, wgl = _precompute_latitudes(nlat_in, grid=grid_in)
        quad_weights = 2.0 * torch.pi * torch.from_numpy(wgl).float().reshape(-1, 1) / nlon_in
Boris Bonev's avatar
Boris Bonev committed
268
269

        if transpose:
270
            psi_dense = _precompute_convolution_tensor_dense(out_shape, in_shape, kernel_shape, quad_weights, grid_in=grid_out, grid_out=grid_in, theta_cutoff=theta_cutoff, transpose_normalization=True, merge_quadrature=True).to(self.device)
Boris Bonev's avatar
Boris Bonev committed
271
272
273
274

            psi = torch.sparse_coo_tensor(conv.psi_idx, conv.psi_vals, size=(conv.kernel_size, conv.nlat_in, conv.nlat_out * conv.nlon_out)).to_dense()

            self.assertTrue(torch.allclose(psi, psi_dense[:, :, 0].reshape(-1, nlat_in, nlat_out * nlon_out)))
Boris Bonev's avatar
Boris Bonev committed
275
        else:
276
            psi_dense = _precompute_convolution_tensor_dense(in_shape, out_shape, kernel_shape, quad_weights, grid_in=grid_in, grid_out=grid_out, theta_cutoff=theta_cutoff, transpose_normalization=False, merge_quadrature=True).to(self.device)
Boris Bonev's avatar
Boris Bonev committed
277

Boris Bonev's avatar
Boris Bonev committed
278
279
            psi = torch.sparse_coo_tensor(conv.psi_idx, conv.psi_vals, size=(conv.kernel_size, conv.nlat_out, conv.nlat_in * conv.nlon_in)).to_dense()

Boris Bonev's avatar
Boris Bonev committed
280
            self.assertTrue(torch.allclose(psi, psi_dense[:, :, 0].reshape(-1, nlat_out, nlat_in * nlon_in)))
Boris Bonev's avatar
Boris Bonev committed
281
282

        # create a copy of the weight
283
284
285
286
        w_ref = torch.empty_like(conv.weight)
        with torch.no_grad():
            w_ref.copy_(conv.weight)
        w_ref.requires_grad = True
Boris Bonev's avatar
Boris Bonev committed
287
288

        # create an input signal
289
290
291
292
293
294
295
296
        x = torch.randn(batch_size, in_channels, *in_shape, device=self.device)

        # FWD and BWD pass
        x.requires_grad = True
        y = conv(x)
        grad_input = torch.randn_like(y)
        y.backward(grad_input)
        x_grad = x.grad.clone()
Boris Bonev's avatar
Boris Bonev committed
297
298
299

        # perform the reference computation
        x_ref = x.clone().detach()
300
        x_ref.requires_grad = True
Boris Bonev's avatar
Boris Bonev committed
301
302
        if transpose:
            y_ref = torch.einsum("oif,biqr->bofqr", w_ref, x_ref)
303
            y_ref = torch.einsum("fqrtp,bofqr->botp", psi_dense, y_ref)
Boris Bonev's avatar
Boris Bonev committed
304
        else:
305
            y_ref = torch.einsum("ftpqr,bcqr->bcftp", psi_dense, x_ref)
Boris Bonev's avatar
Boris Bonev committed
306
            y_ref = torch.einsum("oif,biftp->botp", w_ref, y_ref)
307
        y_ref.backward(grad_input)
Boris Bonev's avatar
Boris Bonev committed
308
309
        x_ref_grad = x_ref.grad.clone()

Boris Bonev's avatar
Boris Bonev committed
310
311
312
        # compare results
        self.assertTrue(torch.allclose(y, y_ref, rtol=tol, atol=tol))

Boris Bonev's avatar
Boris Bonev committed
313
        # compare
314
        self.assertTrue(torch.allclose(x_grad, x_ref_grad, rtol=tol, atol=tol))
Boris Bonev's avatar
Boris Bonev committed
315
316
        self.assertTrue(torch.allclose(conv.weight.grad, w_ref.grad, rtol=tol, atol=tol))

Boris Bonev's avatar
Boris Bonev committed
317

Boris Bonev's avatar
Boris Bonev committed
318
319
if __name__ == "__main__":
    unittest.main()