_disco_convolution.py 10.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# coding=utf-8

# SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

32
from typing import Optional
33
34
35
import math

import torch
36
from torch.amp import custom_fwd, custom_bwd
37

Boris Bonev's avatar
Boris Bonev committed
38
39
40
41
try:
    import disco_cuda_extension
except ImportError as err:
    disco_cuda_extension = None
42

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# some helper functions
def _get_psi(kernel_size: int, psi_idx: torch.Tensor, psi_vals: torch.Tensor, nlat_in: int, nlon_in: int, nlat_out: int, nlon_out: int, nlat_in_local: Optional[int] = None, nlat_out_local: Optional[int] = None, semi_transposed: Optional[bool] = False):

    nlat_in_local = nlat_in_local if nlat_in_local is not None else nlat_in
    nlat_out_local = nlat_out_local if nlat_out_local is not None else nlat_out
    
    if semi_transposed:
        # do partial transpose
        # we do a semi-transposition to faciliate the computation
        tout = psi_idx[2] // nlon_out
        pout = psi_idx[2] % nlon_out
        # flip the axis of longitudes
        pout = nlon_out - 1 - pout
        tin = psi_idx[1]
        idx = torch.stack([psi_idx[0], tout, tin * nlon_out + pout], dim=0)
        psi = torch.sparse_coo_tensor(idx, psi_vals, size=(kernel_size, nlat_out_local, nlat_in_local * nlon_out)).coalesce()
    else:
        psi = torch.sparse_coo_tensor(psi_idx, psi_vals, size=(kernel_size, nlat_out_local, nlat_in_local * nlon_in)).coalesce()
    return psi

63

Boris Bonev's avatar
Boris Bonev committed
64
class _DiscoS2ContractionCuda(torch.autograd.Function):
apaaris's avatar
apaaris committed
65

66
    @staticmethod
Thorsten Kurth's avatar
Thorsten Kurth committed
67
    @custom_fwd(device_type="cuda")
Boris Bonev's avatar
Boris Bonev committed
68
69
70
    def forward(ctx, x: torch.Tensor, roff_idx: torch.Tensor, ker_idx: torch.Tensor,
                row_idx: torch.Tensor, col_idx: torch.Tensor, vals: torch.Tensor,
                kernel_size: int, nlat_out: int, nlon_out: int):
apaaris's avatar
apaaris committed
71
        
Boris Bonev's avatar
Boris Bonev committed
72
73
74
        ctx.save_for_backward(roff_idx, ker_idx, row_idx, col_idx, vals)
        ctx.kernel_size = kernel_size
        ctx.nlat_in = x.shape[-2]
75
        ctx.nlon_in = x.shape[-1]
Thorsten Kurth's avatar
Thorsten Kurth committed
76
77
78
79
        xtype = x.dtype
        x = x.to(torch.float32).contiguous()
        output = disco_cuda_extension.forward(x, roff_idx, ker_idx, row_idx, col_idx, vals, kernel_size, nlat_out, nlon_out)
        output = output.to(xtype)
80

81
        return output
82
83

    @staticmethod
84
    @custom_bwd(device_type="cuda")
85
    def backward(ctx, grad_output):
86

Boris Bonev's avatar
Boris Bonev committed
87
        roff_idx, ker_idx, row_idx, col_idx, vals = ctx.saved_tensors
Thorsten Kurth's avatar
Thorsten Kurth committed
88
89
90
        gtype =	grad_output.dtype
        grad_output = grad_output.to(torch.float32).contiguous()
        grad_input = disco_cuda_extension.backward(grad_output, roff_idx, ker_idx, row_idx, col_idx, vals,
Boris Bonev's avatar
Boris Bonev committed
91
                                         ctx.kernel_size, ctx.nlat_in, ctx.nlon_in)
Thorsten Kurth's avatar
Thorsten Kurth committed
92
        grad_input = grad_input.to(gtype)
93

Boris Bonev's avatar
Boris Bonev committed
94
        return grad_input, None, None, None, None, None, None, None, None
95

Boris Bonev's avatar
Boris Bonev committed
96
97

class _DiscoS2TransposeContractionCuda(torch.autograd.Function):
apaaris's avatar
apaaris committed
98

99
    @staticmethod
Thorsten Kurth's avatar
Thorsten Kurth committed
100
    @custom_fwd(device_type="cuda")
Boris Bonev's avatar
Boris Bonev committed
101
102
103
    def forward(ctx, x: torch.Tensor, roff_idx: torch.Tensor, ker_idx: torch.Tensor,
                row_idx: torch.Tensor, col_idx: torch.Tensor, vals: torch.Tensor,
                kernel_size: int, nlat_out: int, nlon_out: int):
apaaris's avatar
apaaris committed
104
        
Boris Bonev's avatar
Boris Bonev committed
105
106
107
        ctx.save_for_backward(roff_idx, ker_idx, row_idx, col_idx, vals)
        ctx.kernel_size = kernel_size
        ctx.nlat_in = x.shape[-2]
108
        ctx.nlon_in = x.shape[-1]
Thorsten Kurth's avatar
Thorsten Kurth committed
109
110
111
112
        xtype =	x.dtype
        x = x.to(torch.float32).contiguous()
        output = disco_cuda_extension.backward(x, roff_idx, ker_idx, row_idx, col_idx, vals, kernel_size, nlat_out, nlon_out)
        output = output.to(xtype)
113

114
        return output
115
116

    @staticmethod
117
    @custom_bwd(device_type="cuda")
118
    def backward(ctx, grad_output):
119
       
Boris Bonev's avatar
Boris Bonev committed
120
        roff_idx, ker_idx, row_idx, col_idx, vals = ctx.saved_tensors
Thorsten Kurth's avatar
Thorsten Kurth committed
121
122
123
        gtype = grad_output.dtype
        grad_output = grad_output.to(torch.float32).contiguous()
        grad_input = disco_cuda_extension.forward(grad_output, roff_idx, ker_idx, row_idx, col_idx, vals,
Boris Bonev's avatar
Boris Bonev committed
124
                                        ctx.kernel_size, ctx.nlat_in, ctx.nlon_in)
Thorsten Kurth's avatar
Thorsten Kurth committed
125
        grad_input = grad_input.to(gtype)
126

Boris Bonev's avatar
Boris Bonev committed
127
        return grad_input, None, None, None, None, None, None, None, None
128

Boris Bonev's avatar
Boris Bonev committed
129
130
131
132
133
134
# CUDA
def _disco_s2_contraction_cuda(x: torch.Tensor, roff_idx: torch.Tensor, ker_idx: torch.Tensor,
                               row_idx: torch.Tensor, col_idx: torch.Tensor, vals: torch.Tensor,
                               kernel_size: int, nlat_out: int, nlon_out: int) -> torch.Tensor:
    return _DiscoS2ContractionCuda.apply(x, roff_idx, ker_idx, row_idx, col_idx, vals,
                                         kernel_size, nlat_out, nlon_out)
135

Boris Bonev's avatar
Boris Bonev committed
136
137
138
139
140
def _disco_s2_transpose_contraction_cuda(x: torch.Tensor, roff_idx: torch.Tensor, ker_idx: torch.Tensor,
                                         row_idx: torch.Tensor, col_idx: torch.Tensor, vals: torch.Tensor,
                                         kernel_size: int, nlat_out: int, nlon_out: int) -> torch.Tensor:
    return _DiscoS2TransposeContractionCuda.apply(x, roff_idx, ker_idx, row_idx, col_idx, vals,
                                                  kernel_size, nlat_out, nlon_out)
141
142
143
144
145
146


def _disco_s2_contraction_torch(x: torch.Tensor, psi: torch.Tensor, nlon_out: int):
    """
    Reference implementation of the custom contraction as described in [1]. This requires repeated
    shifting of the input tensor, which can potentially be costly. For an efficient implementation
Boris Bonev's avatar
Boris Bonev committed
147
    on GPU, make sure to use the custom kernel written in CUDA.
148
149
150
151
152
153
154
155
156
157
158
159
160
161

    Parameters
    -----------
    x: torch.Tensor
        Input tensor
    psi: torch.Tensor
        Kernel tensor
    nlon_out: int   
        Number of output longitude points

    Returns
    --------
    y: torch.Tensor
        Output tensor
162
163
164
165
166
167
168
169
170
171
    """
    assert len(psi.shape) == 3
    assert len(x.shape) == 4
    psi = psi.to(x.device)

    batch_size, n_chans, nlat_in, nlon_in = x.shape
    kernel_size, nlat_out, _ = psi.shape

    assert psi.shape[-1] == nlat_in * nlon_in
    assert nlon_in % nlon_out == 0
Boris Bonev's avatar
Boris Bonev committed
172
    assert nlon_in >= nlat_out
173
174
    pscale = nlon_in // nlon_out

175
    # add a dummy dimension for nkernel and move the batch and channel dims to the end
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
    x = x.reshape(1, batch_size * n_chans, nlat_in, nlon_in).permute(0, 2, 3, 1)
    x = x.expand(kernel_size, -1, -1, -1)

    y = torch.zeros(nlon_out, kernel_size, nlat_out, batch_size * n_chans, device=x.device, dtype=x.dtype)

    for pout in range(nlon_out):
        # sparse contraction with psi
        y[pout] = torch.bmm(psi, x.reshape(kernel_size, nlat_in * nlon_in, -1))
        # we need to repeatedly roll the input tensor to faciliate the shifted multiplication
        x = torch.roll(x, -pscale, dims=2)

    # reshape y back to expose the correct dimensions
    y = y.permute(3, 1, 2, 0).reshape(batch_size, n_chans, kernel_size, nlat_out, nlon_out)

    return y


def _disco_s2_transpose_contraction_torch(x: torch.Tensor, psi: torch.Tensor, nlon_out: int):
    """
    Reference implementation of the custom contraction as described in [1]. This requires repeated
    shifting of the input tensor, which can potentially be costly. For an efficient implementation
Boris Bonev's avatar
Boris Bonev committed
197
    on GPU, make sure to use the custom kernel written in CUDA.
198
199
200
201
202
203
204
205
206
207
208
209
210
211

    Parameters
    -----------
    x: torch.Tensor
        Input tensor
    psi: torch.Tensor
        Kernel tensor   
    nlon_out: int
        Number of output longitude points

    Returns
    --------
    y: torch.Tensor
        Output tensor
212
213
214
215
216
217
    """
    assert len(psi.shape) == 3
    assert len(x.shape) == 5
    psi = psi.to(x.device)

    batch_size, n_chans, kernel_size, nlat_in, nlon_in = x.shape
218
    kernel_size, nlat_out, n_out = psi.shape
219
220

    assert n_out % nlon_out == 0
Boris Bonev's avatar
Boris Bonev committed
221
    assert nlon_out >= nlon_in
222
223
224
225
    pscale = nlon_out // nlon_in

    # interleave zeros along the longitude dimension to allow for fractional offsets to be considered
    x_ext = torch.zeros(kernel_size, nlat_in, nlon_out, batch_size * n_chans, device=x.device, dtype=x.dtype)
226
    x = x.reshape(batch_size * n_chans, kernel_size, nlat_in, nlon_in).permute(1, 2, 3, 0)
Boris Bonev's avatar
Boris Bonev committed
227

228
229
230
    # x has shape kernel_size x nlat_in x nlon_in x batch_size * n_chans
    # we only need to apoply the nlon stride here, since nlat stride is taken care of by the kernel
    x_ext[:, :, ::pscale, :] = x[...]
231

232
    # create output tensor
233
234
235
236
237
238
239
    y = torch.zeros(kernel_size, nlon_out, nlat_out, batch_size * n_chans, device=x.device, dtype=x.dtype)

    for pout in range(nlon_out):
        # we need to repeatedly roll the input tensor to faciliate the shifted multiplication
        # TODO: double-check why this has to happen first
        x_ext = torch.roll(x_ext, -1, dims=2)
        # sparse contraction with the modified psi
240
        y[:, pout, :, :] = torch.bmm(psi, x_ext.reshape(kernel_size, nlat_in * nlon_out, -1))
241
242

    # sum over the kernel dimension and reshape to the correct output size
243
    y = y.sum(dim=0).permute(2, 1, 0).reshape(batch_size, n_chans, nlat_out, nlon_out).contiguous()
244
245
246

    return y