test_sht.py 10.7 KB
Newer Older
Boris Bonev's avatar
Boris Bonev committed
1
2
3
4
# coding=utf-8

# SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
Boris Bonev's avatar
Boris Bonev committed
5
#
Boris Bonev's avatar
Boris Bonev committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

import unittest
33
from parameterized import parameterized, parameterized_class
Boris Bonev's avatar
Boris Bonev committed
34
import math
Boris Bonev's avatar
Boris Bonev committed
35
import torch
Boris Bonev's avatar
Boris Bonev committed
36
from torch.autograd import gradcheck
Boris Bonev's avatar
Boris Bonev committed
37
import torch_harmonics as th
Boris Bonev's avatar
Boris Bonev committed
38

39
40
41
42
43
_devices = [(torch.device("cpu"),)]
if torch.cuda.is_available():
    _devices.append((torch.device("cuda"),))


Boris Bonev's avatar
Boris Bonev committed
44
class TestLegendrePolynomials(unittest.TestCase):
45
    """Test the associated Legendre polynomials (CPU/CUDA if available)."""
Boris Bonev's avatar
Boris Bonev committed
46
    def setUp(self):
Thorsten Kurth's avatar
Thorsten Kurth committed
47
        self.cml = lambda m, l: math.sqrt((2 * l + 1) / 4 / math.pi) * math.sqrt(math.factorial(l - m) / math.factorial(l + m))
Boris Bonev's avatar
Boris Bonev committed
48
49
50
51
        self.pml = dict()

        # preparing associated Legendre Polynomials (These include the Condon-Shortley phase)
        # for reference see e.g. https://en.wikipedia.org/wiki/Associated_Legendre_polynomials
Thorsten Kurth's avatar
Thorsten Kurth committed
52
        self.pml[(0, 0)] = lambda x: torch.ones_like(x)
Boris Bonev's avatar
Boris Bonev committed
53
        self.pml[(0, 1)] = lambda x: x
Thorsten Kurth's avatar
Thorsten Kurth committed
54
        self.pml[(1, 1)] = lambda x: -torch.sqrt(1.0 - x**2)
Boris Bonev's avatar
Boris Bonev committed
55
        self.pml[(0, 2)] = lambda x: 0.5 * (3 * x**2 - 1)
Thorsten Kurth's avatar
Thorsten Kurth committed
56
        self.pml[(1, 2)] = lambda x: -3 * x * torch.sqrt(1.0 - x**2)
Boris Bonev's avatar
Boris Bonev committed
57
58
        self.pml[(2, 2)] = lambda x: 3 * (1 - x**2)
        self.pml[(0, 3)] = lambda x: 0.5 * (5 * x**3 - 3 * x)
Thorsten Kurth's avatar
Thorsten Kurth committed
59
        self.pml[(1, 3)] = lambda x: 1.5 * (1 - 5 * x**2) * torch.sqrt(1.0 - x**2)
Boris Bonev's avatar
Boris Bonev committed
60
        self.pml[(2, 3)] = lambda x: 15 * x * (1 - x**2)
Thorsten Kurth's avatar
Thorsten Kurth committed
61
        self.pml[(3, 3)] = lambda x: -15 * torch.sqrt(1.0 - x**2) ** 3
Boris Bonev's avatar
Boris Bonev committed
62
63
64

        self.lmax = self.mmax = 4

Boris Bonev's avatar
Boris Bonev committed
65
66
        self.tol = 1e-9

Thorsten Kurth's avatar
Thorsten Kurth committed
67
68
69
    def test_legendre(self, verbose=False):
        if verbose:
            print("Testing computation of associated Legendre polynomials")
Boris Bonev's avatar
Boris Bonev committed
70

Thorsten Kurth's avatar
Thorsten Kurth committed
71
        t = torch.linspace(0, 1, 100, dtype=torch.float64)
Boris Bonev's avatar
Boris Bonev committed
72
        vdm = th.legendre.legpoly(self.mmax, self.lmax, t)
Boris Bonev's avatar
Boris Bonev committed
73
74

        for l in range(self.lmax):
Boris Bonev's avatar
Boris Bonev committed
75
76
            for m in range(l + 1):
                diff = vdm[m, l] / self.cml(m, l) - self.pml[(m, l)](t)
Boris Bonev's avatar
Boris Bonev committed
77
                self.assertTrue(diff.max() <= self.tol)
Boris Bonev's avatar
Boris Bonev committed
78
79


80
@parameterized_class(("device"), _devices)
Boris Bonev's avatar
Boris Bonev committed
81
class TestSphericalHarmonicTransform(unittest.TestCase):
82
    """Test the spherical harmonic transform (CPU/CUDA if available)."""
Boris Bonev's avatar
Boris Bonev committed
83
    def setUp(self):
apaaris's avatar
apaaris committed
84
85
86
87
        if torch.cuda.is_available():
            self.device = torch.device("cuda")
        else:
            self.device = torch.device("cpu")
Boris Bonev's avatar
Boris Bonev committed
88
89
90

    @parameterized.expand(
        [
91
92
93
94
95
96
97
98
99
100
101
102
103
104
            # even-even
            [32, 64, 32, "ortho", "equiangular", 1e-9, False],
            [32, 64, 32, "ortho", "legendre-gauss", 1e-9, False],
            [32, 64, 32, "ortho", "lobatto", 1e-9, False],
            [32, 64, 32, "four-pi", "equiangular", 1e-9, False],
            [32, 64, 32, "four-pi", "legendre-gauss", 1e-9, False],
            [32, 64, 32, "four-pi", "lobatto", 1e-9, False],
            [32, 64, 32, "schmidt", "equiangular", 1e-9, False],
            [32, 64, 32, "schmidt", "legendre-gauss", 1e-9, False],
            [32, 64, 32, "schmidt", "lobatto", 1e-9, False],
            # odd-even
            [33, 64, 32, "ortho", "equiangular", 1e-9, False],
            [33, 64, 32, "ortho", "legendre-gauss", 1e-9, False],
            [33, 64, 32, "ortho", "lobatto", 1e-9, False],
Thorsten Kurth's avatar
Thorsten Kurth committed
105
            [33, 64, 32, "four-pi", "equiangular", 1e-9, False],
106
107
108
109
110
            [33, 64, 32, "four-pi", "legendre-gauss", 1e-9, False],
            [33, 64, 32, "four-pi", "lobatto", 1e-9, False],
            [33, 64, 32, "schmidt", "equiangular", 1e-9, False],
            [33, 64, 32, "schmidt", "legendre-gauss", 1e-9, False],
            [33, 64, 32, "schmidt", "lobatto", 1e-9, False],
Thorsten Kurth's avatar
Thorsten Kurth committed
111
112
        ],
        skip_on_empty=True,
Boris Bonev's avatar
Boris Bonev committed
113
    )
Thorsten Kurth's avatar
Thorsten Kurth committed
114
    def test_forward_inverse(self, nlat, nlon, batch_size, norm, grid, tol, verbose):
Thorsten Kurth's avatar
Thorsten Kurth committed
115
116
        if verbose:
            print(f"Testing real-valued SHT on {nlat}x{nlon} {grid} grid with {norm} normalization on {self.device.type} device")
Boris Bonev's avatar
Boris Bonev committed
117
118

        testiters = [1, 2, 4, 8, 16]
Boris Bonev's avatar
Boris Bonev committed
119
120
        if grid == "equiangular":
            mmax = nlat // 2
121
122
        elif grid == "lobatto":
            mmax = nlat - 1
Boris Bonev's avatar
Boris Bonev committed
123
124
        else:
            mmax = nlat
Boris Bonev's avatar
Boris Bonev committed
125
126
        lmax = mmax

Boris Bonev's avatar
Boris Bonev committed
127
128
        sht = th.RealSHT(nlat, nlon, mmax=mmax, lmax=lmax, grid=grid, norm=norm).to(self.device)
        isht = th.InverseRealSHT(nlat, nlon, mmax=mmax, lmax=lmax, grid=grid, norm=norm).to(self.device)
Boris Bonev's avatar
Boris Bonev committed
129

Boris Bonev's avatar
Boris Bonev committed
130
131
132
133
        with torch.no_grad():
            coeffs = torch.zeros(batch_size, lmax, mmax, device=self.device, dtype=torch.complex128)
            coeffs[:, :lmax, :mmax] = torch.randn(batch_size, lmax, mmax, device=self.device, dtype=torch.complex128)
            signal = isht(coeffs)
Boris Bonev's avatar
Boris Bonev committed
134

Boris Bonev's avatar
Boris Bonev committed
135
        # testing error accumulation
Boris Bonev's avatar
Boris Bonev committed
136
        for iter in testiters:
Boris Bonev's avatar
Boris Bonev committed
137
            with self.subTest(i=iter):
Thorsten Kurth's avatar
Thorsten Kurth committed
138
139
                if verbose:
                    print(f"{iter} iterations of batchsize {batch_size}:")
Boris Bonev's avatar
Boris Bonev committed
140
141
142

                base = signal

143
                for _ in range(iter):
Boris Bonev's avatar
Boris Bonev committed
144
                    base = isht(sht(base))
Boris Bonev's avatar
Boris Bonev committed
145
146

                err = torch.mean(torch.norm(base - signal, p="fro", dim=(-1, -2)) / torch.norm(signal, p="fro", dim=(-1, -2)))
Thorsten Kurth's avatar
Thorsten Kurth committed
147
148
                if verbose:
                    print(f"final relative error: {err.item()}")
Boris Bonev's avatar
Boris Bonev committed
149
150
                self.assertTrue(err.item() <= tol)

Boris Bonev's avatar
Boris Bonev committed
151
152
    @parameterized.expand(
        [
153
            # even-even
Thorsten Kurth's avatar
Thorsten Kurth committed
154
155
            [12, 24, 2, "ortho", "equiangular", 1e-5, False],
            [12, 24, 2, "ortho", "legendre-gauss", 1e-5, False],
156
            [12, 24, 2, "ortho", "lobatto", 1e-5, False],
Thorsten Kurth's avatar
Thorsten Kurth committed
157
158
            [12, 24, 2, "four-pi", "equiangular", 1e-5, False],
            [12, 24, 2, "four-pi", "legendre-gauss", 1e-5, False],
159
            [12, 24, 2, "four-pi", "lobatto", 1e-5, False],
Thorsten Kurth's avatar
Thorsten Kurth committed
160
161
            [12, 24, 2, "schmidt", "equiangular", 1e-5, False],
            [12, 24, 2, "schmidt", "legendre-gauss", 1e-5, False],
162
            [12, 24, 2, "schmidt", "lobatto", 1e-5, False],
163
            # odd-even
Thorsten Kurth's avatar
Thorsten Kurth committed
164
165
            [15, 30, 2, "ortho", "equiangular", 1e-5, False],
            [15, 30, 2, "ortho", "legendre-gauss", 1e-5, False],
166
            [15, 30, 2, "ortho", "lobatto", 1e-5, False],
Thorsten Kurth's avatar
Thorsten Kurth committed
167
168
            [15, 30, 2, "four-pi", "equiangular", 1e-5, False],
            [15, 30, 2, "four-pi", "legendre-gauss", 1e-5, False],
169
            [15, 30, 2, "four-pi", "lobatto", 1e-5, False],
Thorsten Kurth's avatar
Thorsten Kurth committed
170
171
            [15, 30, 2, "schmidt", "equiangular", 1e-5, False],
            [15, 30, 2, "schmidt", "legendre-gauss", 1e-5, False],
172
            [15, 30, 2, "schmidt", "lobatto", 1e-5, False],
Thorsten Kurth's avatar
Thorsten Kurth committed
173
174
        ],
        skip_on_empty=True,
Boris Bonev's avatar
Boris Bonev committed
175
    )
Thorsten Kurth's avatar
Thorsten Kurth committed
176
    def test_grads(self, nlat, nlon, batch_size, norm, grid, tol, verbose):
Thorsten Kurth's avatar
Thorsten Kurth committed
177
178
        if verbose:
            print(f"Testing gradients of real-valued SHT on {nlat}x{nlon} {grid} grid with {norm} normalization")
Boris Bonev's avatar
Boris Bonev committed
179
180
181

        if grid == "equiangular":
            mmax = nlat // 2
182
183
        elif grid == "lobatto":
            mmax = nlat - 1
Boris Bonev's avatar
Boris Bonev committed
184
185
        else:
            mmax = nlat
Boris Bonev's avatar
Boris Bonev committed
186
187
        lmax = mmax

Boris Bonev's avatar
Boris Bonev committed
188
189
        sht = th.RealSHT(nlat, nlon, mmax=mmax, lmax=lmax, grid=grid, norm=norm).to(self.device)
        isht = th.InverseRealSHT(nlat, nlon, mmax=mmax, lmax=lmax, grid=grid, norm=norm).to(self.device)
Boris Bonev's avatar
Boris Bonev committed
190

Boris Bonev's avatar
Boris Bonev committed
191
192
193
194
        with torch.no_grad():
            coeffs = torch.zeros(batch_size, lmax, mmax, device=self.device, dtype=torch.complex128)
            coeffs[:, :lmax, :mmax] = torch.randn(batch_size, lmax, mmax, device=self.device, dtype=torch.complex128)
            signal = isht(coeffs)
Boris Bonev's avatar
Boris Bonev committed
195
196

        # test the sht
Boris Bonev's avatar
Boris Bonev committed
197
        grad_input = torch.randn_like(signal, requires_grad=True)
Boris Bonev's avatar
Boris Bonev committed
198
199
200
201
202
203
204
        err_handle = lambda x: torch.mean(torch.norm(sht(x) - coeffs, p="fro", dim=(-1, -2)) / torch.norm(coeffs, p="fro", dim=(-1, -2)))
        test_result = gradcheck(err_handle, grad_input, eps=1e-6, atol=tol)
        self.assertTrue(test_result)

        # test the isht
        grad_input = torch.randn_like(coeffs, requires_grad=True)
        err_handle = lambda x: torch.mean(torch.norm(isht(x) - signal, p="fro", dim=(-1, -2)) / torch.norm(signal, p="fro", dim=(-1, -2)))
Boris Bonev's avatar
Boris Bonev committed
205
        test_result = gradcheck(err_handle, grad_input, eps=1e-6, atol=tol)
Boris Bonev's avatar
Boris Bonev committed
206
        self.assertTrue(test_result)
Boris Bonev's avatar
Boris Bonev committed
207

Thorsten Kurth's avatar
Thorsten Kurth committed
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
    @parameterized.expand(
        [
            # even-even
            [12, 24, 2, "ortho", "equiangular", 1e-5, False],
            [12, 24, 2, "ortho", "legendre-gauss", 1e-5, False],
            [12, 24, 2, "ortho", "lobatto", 1e-5, False],
        ],
        skip_on_empty=True,
    )
    @unittest.skipIf(not torch.cuda.is_available(), "CUDA is not available")
    def test_device_instantiation(self, nlat, nlon, batch_size, norm, grid, tol, verbose):
        if verbose:
            print(f"Testing device instantiation of real-valued SHT on {nlat}x{nlon} {grid} grid with {norm} normalization")

        if grid == "equiangular":
            mmax = nlat // 2
        elif grid == "lobatto":
            mmax = nlat - 1
        else:
            mmax = nlat
        lmax = mmax

        # init on cpu
        sht_host = th.RealSHT(nlat, nlon, mmax=mmax, lmax=lmax, grid=grid, norm=norm)
        isht_host = th.InverseRealSHT(nlat, nlon, mmax=mmax, lmax=lmax, grid=grid, norm=norm)

        # init on device
        with torch.device(self.device):
            sht_device = th.RealSHT(nlat, nlon, mmax=mmax, lmax=lmax, grid=grid, norm=norm)
            isht_device = th.InverseRealSHT(nlat, nlon, mmax=mmax, lmax=lmax, grid=grid, norm=norm)

        self.assertTrue(torch.allclose(sht_host.weights.cpu(), sht_device.weights.cpu()))
        self.assertTrue(torch.allclose(isht_host.pct.cpu(), isht_device.pct.cpu()))

Boris Bonev's avatar
Boris Bonev committed
242

Boris Bonev's avatar
Boris Bonev committed
243
244
if __name__ == "__main__":
    unittest.main()