test_distributed_sht.py 17.2 KB
Newer Older
1
2
3
4
# coding=utf-8

# SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
5
#
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

import os
import unittest
from parameterized import parameterized

import torch
import torch.nn.functional as F
import torch.distributed as dist
Boris Bonev's avatar
Boris Bonev committed
39
import torch_harmonics as th
40
41
42
43
import torch_harmonics.distributed as thd


class TestDistributedSphericalHarmonicTransform(unittest.TestCase):
44
    """Test the distributed spherical harmonic transform module (CPU/CUDA if available)."""
45
46
47
48

    @classmethod
    def setUpClass(cls):
        # set up distributed
49
50
51
52
53
        cls.world_rank = int(os.getenv("WORLD_RANK", 0))
        cls.grid_size_h = int(os.getenv("GRID_H", 1))
        cls.grid_size_w = int(os.getenv("GRID_W", 1))
        port = int(os.getenv("MASTER_PORT", "29501"))
        master_address = os.getenv("MASTER_ADDR", "localhost")
54
55
56
57
58
59
60
61
        cls.world_size = cls.grid_size_h * cls.grid_size_w

        if torch.cuda.is_available():
            if cls.world_rank == 0:
                print("Running test on GPU")
            local_rank = cls.world_rank % torch.cuda.device_count()
            cls.device = torch.device(f"cuda:{local_rank}")
            torch.cuda.manual_seed(333)
62
            proc_backend = "nccl"
63
64
65
        else:
            if cls.world_rank == 0:
                print("Running test on CPU")
66
67
            cls.device = torch.device("cpu")
            proc_backend = "gloo"
68
69
        torch.manual_seed(333)

70
71
        dist.init_process_group(backend=proc_backend, init_method=f"tcp://{master_address}:{port}", rank=cls.world_rank, world_size=cls.world_size)

72
73
74
75
        cls.wrank = cls.world_rank % cls.grid_size_w
        cls.hrank = cls.world_rank // cls.grid_size_w

        # now set up the comm groups:
76
        # set default
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
        cls.w_group = None
        cls.h_group = None

        # do the init
        wgroups = []
        for w in range(0, cls.world_size, cls.grid_size_w):
            start = w
            end = w + cls.grid_size_w
            wgroups.append(list(range(start, end)))

        if cls.world_rank == 0:
            print("w-groups:", wgroups)
        for grp in wgroups:
            if len(grp) == 1:
                continue
            tmp_group = dist.new_group(ranks=grp)
            if cls.world_rank in grp:
                cls.w_group = tmp_group

        # transpose:
        hgroups = [sorted(list(i)) for i in zip(*wgroups)]

        if cls.world_rank == 0:
            print("h-groups:", hgroups)
        for grp in hgroups:
            if len(grp) == 1:
                continue
            tmp_group = dist.new_group(ranks=grp)
            if cls.world_rank in grp:
                cls.h_group = tmp_group

        # set seed
        torch.manual_seed(333)

        if cls.world_rank == 0:
            print(f"Running distributed tests on grid H x W = {cls.grid_size_h} x {cls.grid_size_w}")

        # initializing sht
        thd.init(cls.h_group, cls.w_group)

117
118
119
120
121
    @classmethod
    def tearDownClass(cls):
        thd.finalize()
        dist.destroy_process_group(None)

122
123
124
125
126
127
128
129
130
131
132
    def _split_helper(self, tensor):
        with torch.no_grad():
            # split in W
            tensor_list_local = thd.split_tensor_along_dim(tensor, dim=-1, num_chunks=self.grid_size_w)
            tensor_local = tensor_list_local[self.wrank]

            # split in H
            tensor_list_local = thd.split_tensor_along_dim(tensor_local, dim=-2, num_chunks=self.grid_size_h)
            tensor_local = tensor_list_local[self.hrank]

        return tensor_local
133

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
    def _gather_helper_fwd(self, tensor, B, C, transform_dist, vector):
        # we need the shapes
        l_shapes = transform_dist.l_shapes
        m_shapes = transform_dist.m_shapes

        # gather in W
        if self.grid_size_w > 1:
            if vector:
                gather_shapes = [(B, C, 2, l_shapes[self.hrank], m) for m in m_shapes]
            else:
                gather_shapes = [(B, C, l_shapes[self.hrank], m) for m in m_shapes]
            olist = [torch.empty(shape, dtype=tensor.dtype, device=tensor.device) for shape in gather_shapes]
            olist[self.wrank] = tensor
            dist.all_gather(olist, tensor, group=self.w_group)
            tensor_gather = torch.cat(olist, dim=-1)
        else:
            tensor_gather = tensor

        # gather in H
        if self.grid_size_h > 1:
            if vector:
                gather_shapes = [(B, C, 2, l, transform_dist.mmax) for l in l_shapes]
            else:
                gather_shapes = [(B, C, l, transform_dist.mmax) for l in l_shapes]
            olist = [torch.empty(shape, dtype=tensor_gather.dtype, device=tensor_gather.device) for shape in gather_shapes]
            olist[self.hrank] = tensor_gather
            dist.all_gather(olist, tensor_gather, group=self.h_group)
            tensor_gather = torch.cat(olist, dim=-2)

        return tensor_gather

    def _gather_helper_bwd(self, tensor, B, C, transform_dist, vector):
apaaris's avatar
apaaris committed
166
        
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
        # we need the shapes
        lat_shapes = transform_dist.lat_shapes
        lon_shapes = transform_dist.lon_shapes

        # gather in W
        if self.grid_size_w > 1:
            if vector:
                gather_shapes = [(B, C, 2, lat_shapes[self.hrank], w) for w in lon_shapes]
            else:
                gather_shapes = [(B, C, lat_shapes[self.hrank], w) for w in lon_shapes]
            olist = [torch.empty(shape, dtype=tensor.dtype, device=tensor.device) for shape in gather_shapes]
            olist[self.wrank] = tensor
            dist.all_gather(olist, tensor, group=self.w_group)
            tensor_gather = torch.cat(olist, dim=-1)
        else:
            tensor_gather = tensor

        # gather in H
        if self.grid_size_h > 1:
            if vector:
                gather_shapes = [(B, C, 2, h, transform_dist.nlon) for h in lat_shapes]
            else:
                gather_shapes = [(B, C, h, transform_dist.nlon) for h in lat_shapes]
            olist = [torch.empty(shape, dtype=tensor_gather.dtype, device=tensor_gather.device) for shape in gather_shapes]
            olist[self.hrank] = tensor_gather
            dist.all_gather(olist, tensor_gather, group=self.h_group)
            tensor_gather = torch.cat(olist, dim=-2)

        return tensor_gather

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
    @parameterized.expand(
        [
            [256, 512, 32, 8, "equiangular", False, 1e-9],
            [256, 512, 32, 8, "legendre-gauss", False, 1e-9],
            [256, 512, 32, 8, "equiangular", False, 1e-9],
            [256, 512, 32, 8, "legendre-gauss", False, 1e-9],
            [256, 512, 32, 8, "equiangular", False, 1e-9],
            [256, 512, 32, 8, "legendre-gauss", False, 1e-9],
            [361, 720, 1, 10, "equiangular", False, 1e-6],
            [361, 720, 1, 10, "legendre-gauss", False, 1e-6],
            [256, 512, 32, 8, "equiangular", True, 1e-9],
            [256, 512, 32, 8, "legendre-gauss", True, 1e-9],
            [256, 512, 32, 8, "equiangular", True, 1e-9],
            [256, 512, 32, 8, "legendre-gauss", True, 1e-9],
            [256, 512, 32, 8, "equiangular", True, 1e-9],
            [256, 512, 32, 8, "legendre-gauss", True, 1e-9],
            [361, 720, 1, 10, "equiangular", True, 1e-6],
            [361, 720, 1, 10, "legendre-gauss", True, 1e-6],
        ]
    )
217
    def test_distributed_sht(self, nlat, nlon, batch_size, num_chan, grid, vector, tol):
apaaris's avatar
apaaris committed
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
        """
        Test the distributed spherical harmonic transform.

        Parameters
        ----------
        nlat : int
            Number of latitude points
        nlon : int
            Number of longitude points
        batch_size : int
            Batch size
        num_chan : int
            Number of channels
        grid : str
            Grid type
        vector : bool
            Whether to use vector spherical harmonic transform
        tol : float
            Tolerance for numerical equivalence
        """

239
240
241
242
        B, C, H, W = batch_size, num_chan, nlat, nlon

        # set up handles
        if vector:
Boris Bonev's avatar
Boris Bonev committed
243
            forward_transform_local = th.RealVectorSHT(nlat=H, nlon=W, grid=grid).to(self.device)
244
245
            forward_transform_dist = thd.DistributedRealVectorSHT(nlat=H, nlon=W, grid=grid).to(self.device)
        else:
Boris Bonev's avatar
Boris Bonev committed
246
            forward_transform_local = th.RealSHT(nlat=H, nlon=W, grid=grid).to(self.device)
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
            forward_transform_dist = thd.DistributedRealSHT(nlat=H, nlon=W, grid=grid).to(self.device)

        # create tensors
        if vector:
            inp_full = torch.randn((B, C, 2, H, W), dtype=torch.float32, device=self.device)
        else:
            inp_full = torch.randn((B, C, H, W), dtype=torch.float32, device=self.device)

        #############################################################
        # local transform
        #############################################################
        # FWD pass
        inp_full.requires_grad = True
        out_full = forward_transform_local(inp_full)

        # create grad for backward
        with torch.no_grad():
            # create full grad
            ograd_full = torch.randn_like(out_full)
266

267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
        # BWD pass
        out_full.backward(ograd_full)
        igrad_full = inp_full.grad.clone()

        #############################################################
        # distributed transform
        #############################################################
        # FWD pass
        inp_local = self._split_helper(inp_full)
        inp_local.requires_grad = True
        out_local = forward_transform_dist(inp_local)

        # BWD pass
        ograd_local = self._split_helper(ograd_full)
        out_local = forward_transform_dist(inp_local)
        out_local.backward(ograd_local)
        igrad_local = inp_local.grad.clone()

        #############################################################
        # evaluate FWD pass
        #############################################################
        with torch.no_grad():
            out_gather_full = self._gather_helper_fwd(out_local, B, C, forward_transform_dist, vector)
290
            err = torch.mean(torch.norm(out_full - out_gather_full, p="fro", dim=(-1, -2)) / torch.norm(out_full, p="fro", dim=(-1, -2)))
291
292
293
294
295
296
297
298
299
            if self.world_rank == 0:
                print(f"final relative error of output: {err.item()}")
        self.assertTrue(err.item() <= tol)

        #############################################################
        # evaluate BWD pass
        #############################################################
        with torch.no_grad():
            igrad_gather_full = self._gather_helper_bwd(igrad_local, B, C, forward_transform_dist, vector)
300
            err = torch.mean(torch.norm(igrad_full - igrad_gather_full, p="fro", dim=(-1, -2)) / torch.norm(igrad_full, p="fro", dim=(-1, -2)))
301
302
303
304
            if self.world_rank == 0:
                print(f"final relative error of gradients: {err.item()}")
        self.assertTrue(err.item() <= tol)

305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
    @parameterized.expand(
        [
            [256, 512, 32, 8, "equiangular", False, 1e-9],
            [256, 512, 32, 8, "legendre-gauss", False, 1e-9],
            [256, 512, 32, 8, "equiangular", False, 1e-9],
            [256, 512, 32, 8, "legendre-gauss", False, 1e-9],
            [256, 512, 32, 8, "equiangular", False, 1e-9],
            [256, 512, 32, 8, "legendre-gauss", False, 1e-9],
            [361, 720, 1, 10, "equiangular", False, 1e-6],
            [361, 720, 1, 10, "legendre-gauss", False, 1e-6],
            [256, 512, 32, 8, "equiangular", True, 1e-9],
            [256, 512, 32, 8, "legendre-gauss", True, 1e-9],
            [256, 512, 32, 8, "equiangular", True, 1e-9],
            [256, 512, 32, 8, "legendre-gauss", True, 1e-9],
            [256, 512, 32, 8, "equiangular", True, 1e-9],
            [256, 512, 32, 8, "legendre-gauss", True, 1e-9],
            [361, 720, 1, 10, "equiangular", True, 1e-6],
            [361, 720, 1, 10, "legendre-gauss", True, 1e-6],
        ]
    )
325
    def test_distributed_isht(self, nlat, nlon, batch_size, num_chan, grid, vector, tol):
apaaris's avatar
apaaris committed
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
        """
        Test the distributed inverse spherical harmonic transform.

        Parameters
        ----------
        nlat : int
            Number of latitude points
        nlon : int
            Number of longitude points
        batch_size : int
            Batch size
        num_chan : int
            Number of channels
        grid : str
            Grid type
        vector : bool
            Whether to use vector spherical harmonic transform
        tol : float
            Tolerance for numerical equivalence
        """
        
347
348
349
        B, C, H, W = batch_size, num_chan, nlat, nlon

        if vector:
Boris Bonev's avatar
Boris Bonev committed
350
351
            forward_transform_local = th.RealVectorSHT(nlat=H, nlon=W, grid=grid).to(self.device)
            backward_transform_local = th.InverseRealVectorSHT(nlat=H, nlon=W, grid=grid).to(self.device)
352
            backward_transform_dist = thd.DistributedInverseRealVectorSHT(nlat=H, nlon=W, grid=grid).to(self.device)
353
        else:
Boris Bonev's avatar
Boris Bonev committed
354
355
            forward_transform_local = th.RealSHT(nlat=H, nlon=W, grid=grid).to(self.device)
            backward_transform_local = th.InverseRealSHT(nlat=H, nlon=W, grid=grid).to(self.device)
356
357
358
359
360
361
362
363
364
365
366
            backward_transform_dist = thd.DistributedInverseRealSHT(nlat=H, nlon=W, grid=grid).to(self.device)

        # create tensors
        if vector:
            dummy_full = torch.randn((B, C, 2, H, W), dtype=torch.float32, device=self.device)
        else:
            dummy_full = torch.randn((B, C, H, W), dtype=torch.float32, device=self.device)
        inp_full = forward_transform_local(dummy_full)

        #############################################################
        # local transform
367
368
        #############################################################
        # FWD pass
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
        inp_full.requires_grad = True
        out_full = backward_transform_local(inp_full)

        # create grad for backward
        with torch.no_grad():
            # create full grad
            ograd_full = torch.randn_like(out_full)

        # BWD pass
        out_full.backward(ograd_full)

        # repeat once due to known irfft bug
        inp_full.grad = None
        out_full = backward_transform_local(inp_full)
        out_full.backward(ograd_full)
        igrad_full = inp_full.grad.clone()

        #############################################################
        # distributed transform
        #############################################################
        # FWD pass
        inp_local = self._split_helper(inp_full)
        inp_local.requires_grad = True
        out_local = backward_transform_dist(inp_local)

        # BWD pass
        ograd_local = self._split_helper(ograd_full)
        out_local = backward_transform_dist(inp_local)
        out_local.backward(ograd_local)
        igrad_local = inp_local.grad.clone()

        #############################################################
        # evaluate FWD pass
        #############################################################
        with torch.no_grad():
            out_gather_full = self._gather_helper_bwd(out_local, B, C, backward_transform_dist, vector)
405
            err = torch.mean(torch.norm(out_full - out_gather_full, p="fro", dim=(-1, -2)) / torch.norm(out_full, p="fro", dim=(-1, -2)))
406
407
408
409
410
411
412
413
414
            if self.world_rank == 0:
                print(f"final relative error of output: {err.item()}")
        self.assertTrue(err.item() <= tol)

        #############################################################
        # evaluate BWD pass
        #############################################################
        with torch.no_grad():
            igrad_gather_full = self._gather_helper_fwd(igrad_local, B, C, backward_transform_dist, vector)
415
            err = torch.mean(torch.norm(igrad_full - igrad_gather_full, p="fro", dim=(-1, -2)) / torch.norm(igrad_full, p="fro", dim=(-1, -2)))
416
417
418
419
            if self.world_rank == 0:
                print(f"final relative error of gradients: {err.item()}")
        self.assertTrue(err.item() <= tol)

420
421

if __name__ == "__main__":
422
    unittest.main()