test_distributed_sht.py 17.5 KB
Newer Older
1
2
3
4
# coding=utf-8

# SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
5
#
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

import os
import unittest
from parameterized import parameterized

import torch
import torch.nn.functional as F
import torch.distributed as dist
Boris Bonev's avatar
Boris Bonev committed
39
import torch_harmonics as th
40
41
42
43
import torch_harmonics.distributed as thd


class TestDistributedSphericalHarmonicTransform(unittest.TestCase):
apaaris's avatar
apaaris committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
    """
    Test the distributed spherical harmonic transform module.

    Parameters
    ----------
    nlat : int
        Number of latitude points
    nlon : int
        Number of longitude points
    batch_size : int
        Batch size
    num_chan : int
        Number of channels
    grid : str
        Grid type
    vector : bool
        Whether to use vector spherical harmonic transform
    tol : float
        Tolerance for numerical equivalence
    """
64
65
66
67

    @classmethod
    def setUpClass(cls):
        # set up distributed
68
69
70
71
72
        cls.world_rank = int(os.getenv("WORLD_RANK", 0))
        cls.grid_size_h = int(os.getenv("GRID_H", 1))
        cls.grid_size_w = int(os.getenv("GRID_W", 1))
        port = int(os.getenv("MASTER_PORT", "29501"))
        master_address = os.getenv("MASTER_ADDR", "localhost")
73
74
75
76
77
78
79
80
        cls.world_size = cls.grid_size_h * cls.grid_size_w

        if torch.cuda.is_available():
            if cls.world_rank == 0:
                print("Running test on GPU")
            local_rank = cls.world_rank % torch.cuda.device_count()
            cls.device = torch.device(f"cuda:{local_rank}")
            torch.cuda.manual_seed(333)
81
            proc_backend = "nccl"
82
83
84
        else:
            if cls.world_rank == 0:
                print("Running test on CPU")
85
86
            cls.device = torch.device("cpu")
            proc_backend = "gloo"
87
88
        torch.manual_seed(333)

89
90
        dist.init_process_group(backend=proc_backend, init_method=f"tcp://{master_address}:{port}", rank=cls.world_rank, world_size=cls.world_size)

91
92
93
94
        cls.wrank = cls.world_rank % cls.grid_size_w
        cls.hrank = cls.world_rank // cls.grid_size_w

        # now set up the comm groups:
95
        # set default
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
        cls.w_group = None
        cls.h_group = None

        # do the init
        wgroups = []
        for w in range(0, cls.world_size, cls.grid_size_w):
            start = w
            end = w + cls.grid_size_w
            wgroups.append(list(range(start, end)))

        if cls.world_rank == 0:
            print("w-groups:", wgroups)
        for grp in wgroups:
            if len(grp) == 1:
                continue
            tmp_group = dist.new_group(ranks=grp)
            if cls.world_rank in grp:
                cls.w_group = tmp_group

        # transpose:
        hgroups = [sorted(list(i)) for i in zip(*wgroups)]

        if cls.world_rank == 0:
            print("h-groups:", hgroups)
        for grp in hgroups:
            if len(grp) == 1:
                continue
            tmp_group = dist.new_group(ranks=grp)
            if cls.world_rank in grp:
                cls.h_group = tmp_group

        # set seed
        torch.manual_seed(333)

        if cls.world_rank == 0:
            print(f"Running distributed tests on grid H x W = {cls.grid_size_h} x {cls.grid_size_w}")

        # initializing sht
        thd.init(cls.h_group, cls.w_group)

136
137
138
139
140
    @classmethod
    def tearDownClass(cls):
        thd.finalize()
        dist.destroy_process_group(None)

141
142
143
144
145
146
147
148
149
150
151
    def _split_helper(self, tensor):
        with torch.no_grad():
            # split in W
            tensor_list_local = thd.split_tensor_along_dim(tensor, dim=-1, num_chunks=self.grid_size_w)
            tensor_local = tensor_list_local[self.wrank]

            # split in H
            tensor_list_local = thd.split_tensor_along_dim(tensor_local, dim=-2, num_chunks=self.grid_size_h)
            tensor_local = tensor_list_local[self.hrank]

        return tensor_local
152

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
    def _gather_helper_fwd(self, tensor, B, C, transform_dist, vector):
        # we need the shapes
        l_shapes = transform_dist.l_shapes
        m_shapes = transform_dist.m_shapes

        # gather in W
        if self.grid_size_w > 1:
            if vector:
                gather_shapes = [(B, C, 2, l_shapes[self.hrank], m) for m in m_shapes]
            else:
                gather_shapes = [(B, C, l_shapes[self.hrank], m) for m in m_shapes]
            olist = [torch.empty(shape, dtype=tensor.dtype, device=tensor.device) for shape in gather_shapes]
            olist[self.wrank] = tensor
            dist.all_gather(olist, tensor, group=self.w_group)
            tensor_gather = torch.cat(olist, dim=-1)
        else:
            tensor_gather = tensor

        # gather in H
        if self.grid_size_h > 1:
            if vector:
                gather_shapes = [(B, C, 2, l, transform_dist.mmax) for l in l_shapes]
            else:
                gather_shapes = [(B, C, l, transform_dist.mmax) for l in l_shapes]
            olist = [torch.empty(shape, dtype=tensor_gather.dtype, device=tensor_gather.device) for shape in gather_shapes]
            olist[self.hrank] = tensor_gather
            dist.all_gather(olist, tensor_gather, group=self.h_group)
            tensor_gather = torch.cat(olist, dim=-2)

        return tensor_gather

    def _gather_helper_bwd(self, tensor, B, C, transform_dist, vector):
apaaris's avatar
apaaris committed
185
        
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
        # we need the shapes
        lat_shapes = transform_dist.lat_shapes
        lon_shapes = transform_dist.lon_shapes

        # gather in W
        if self.grid_size_w > 1:
            if vector:
                gather_shapes = [(B, C, 2, lat_shapes[self.hrank], w) for w in lon_shapes]
            else:
                gather_shapes = [(B, C, lat_shapes[self.hrank], w) for w in lon_shapes]
            olist = [torch.empty(shape, dtype=tensor.dtype, device=tensor.device) for shape in gather_shapes]
            olist[self.wrank] = tensor
            dist.all_gather(olist, tensor, group=self.w_group)
            tensor_gather = torch.cat(olist, dim=-1)
        else:
            tensor_gather = tensor

        # gather in H
        if self.grid_size_h > 1:
            if vector:
                gather_shapes = [(B, C, 2, h, transform_dist.nlon) for h in lat_shapes]
            else:
                gather_shapes = [(B, C, h, transform_dist.nlon) for h in lat_shapes]
            olist = [torch.empty(shape, dtype=tensor_gather.dtype, device=tensor_gather.device) for shape in gather_shapes]
            olist[self.hrank] = tensor_gather
            dist.all_gather(olist, tensor_gather, group=self.h_group)
            tensor_gather = torch.cat(olist, dim=-2)

        return tensor_gather

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
    @parameterized.expand(
        [
            [256, 512, 32, 8, "equiangular", False, 1e-9],
            [256, 512, 32, 8, "legendre-gauss", False, 1e-9],
            [256, 512, 32, 8, "equiangular", False, 1e-9],
            [256, 512, 32, 8, "legendre-gauss", False, 1e-9],
            [256, 512, 32, 8, "equiangular", False, 1e-9],
            [256, 512, 32, 8, "legendre-gauss", False, 1e-9],
            [361, 720, 1, 10, "equiangular", False, 1e-6],
            [361, 720, 1, 10, "legendre-gauss", False, 1e-6],
            [256, 512, 32, 8, "equiangular", True, 1e-9],
            [256, 512, 32, 8, "legendre-gauss", True, 1e-9],
            [256, 512, 32, 8, "equiangular", True, 1e-9],
            [256, 512, 32, 8, "legendre-gauss", True, 1e-9],
            [256, 512, 32, 8, "equiangular", True, 1e-9],
            [256, 512, 32, 8, "legendre-gauss", True, 1e-9],
            [361, 720, 1, 10, "equiangular", True, 1e-6],
            [361, 720, 1, 10, "legendre-gauss", True, 1e-6],
        ]
    )
236
    def test_distributed_sht(self, nlat, nlon, batch_size, num_chan, grid, vector, tol):
apaaris's avatar
apaaris committed
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
        """
        Test the distributed spherical harmonic transform.

        Parameters
        ----------
        nlat : int
            Number of latitude points
        nlon : int
            Number of longitude points
        batch_size : int
            Batch size
        num_chan : int
            Number of channels
        grid : str
            Grid type
        vector : bool
            Whether to use vector spherical harmonic transform
        tol : float
            Tolerance for numerical equivalence
        """

258
259
260
261
        B, C, H, W = batch_size, num_chan, nlat, nlon

        # set up handles
        if vector:
Boris Bonev's avatar
Boris Bonev committed
262
            forward_transform_local = th.RealVectorSHT(nlat=H, nlon=W, grid=grid).to(self.device)
263
264
            forward_transform_dist = thd.DistributedRealVectorSHT(nlat=H, nlon=W, grid=grid).to(self.device)
        else:
Boris Bonev's avatar
Boris Bonev committed
265
            forward_transform_local = th.RealSHT(nlat=H, nlon=W, grid=grid).to(self.device)
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
            forward_transform_dist = thd.DistributedRealSHT(nlat=H, nlon=W, grid=grid).to(self.device)

        # create tensors
        if vector:
            inp_full = torch.randn((B, C, 2, H, W), dtype=torch.float32, device=self.device)
        else:
            inp_full = torch.randn((B, C, H, W), dtype=torch.float32, device=self.device)

        #############################################################
        # local transform
        #############################################################
        # FWD pass
        inp_full.requires_grad = True
        out_full = forward_transform_local(inp_full)

        # create grad for backward
        with torch.no_grad():
            # create full grad
            ograd_full = torch.randn_like(out_full)
285

286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
        # BWD pass
        out_full.backward(ograd_full)
        igrad_full = inp_full.grad.clone()

        #############################################################
        # distributed transform
        #############################################################
        # FWD pass
        inp_local = self._split_helper(inp_full)
        inp_local.requires_grad = True
        out_local = forward_transform_dist(inp_local)

        # BWD pass
        ograd_local = self._split_helper(ograd_full)
        out_local = forward_transform_dist(inp_local)
        out_local.backward(ograd_local)
        igrad_local = inp_local.grad.clone()

        #############################################################
        # evaluate FWD pass
        #############################################################
        with torch.no_grad():
            out_gather_full = self._gather_helper_fwd(out_local, B, C, forward_transform_dist, vector)
309
            err = torch.mean(torch.norm(out_full - out_gather_full, p="fro", dim=(-1, -2)) / torch.norm(out_full, p="fro", dim=(-1, -2)))
310
311
312
313
314
315
316
317
318
            if self.world_rank == 0:
                print(f"final relative error of output: {err.item()}")
        self.assertTrue(err.item() <= tol)

        #############################################################
        # evaluate BWD pass
        #############################################################
        with torch.no_grad():
            igrad_gather_full = self._gather_helper_bwd(igrad_local, B, C, forward_transform_dist, vector)
319
            err = torch.mean(torch.norm(igrad_full - igrad_gather_full, p="fro", dim=(-1, -2)) / torch.norm(igrad_full, p="fro", dim=(-1, -2)))
320
321
322
323
            if self.world_rank == 0:
                print(f"final relative error of gradients: {err.item()}")
        self.assertTrue(err.item() <= tol)

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
    @parameterized.expand(
        [
            [256, 512, 32, 8, "equiangular", False, 1e-9],
            [256, 512, 32, 8, "legendre-gauss", False, 1e-9],
            [256, 512, 32, 8, "equiangular", False, 1e-9],
            [256, 512, 32, 8, "legendre-gauss", False, 1e-9],
            [256, 512, 32, 8, "equiangular", False, 1e-9],
            [256, 512, 32, 8, "legendre-gauss", False, 1e-9],
            [361, 720, 1, 10, "equiangular", False, 1e-6],
            [361, 720, 1, 10, "legendre-gauss", False, 1e-6],
            [256, 512, 32, 8, "equiangular", True, 1e-9],
            [256, 512, 32, 8, "legendre-gauss", True, 1e-9],
            [256, 512, 32, 8, "equiangular", True, 1e-9],
            [256, 512, 32, 8, "legendre-gauss", True, 1e-9],
            [256, 512, 32, 8, "equiangular", True, 1e-9],
            [256, 512, 32, 8, "legendre-gauss", True, 1e-9],
            [361, 720, 1, 10, "equiangular", True, 1e-6],
            [361, 720, 1, 10, "legendre-gauss", True, 1e-6],
        ]
    )
344
    def test_distributed_isht(self, nlat, nlon, batch_size, num_chan, grid, vector, tol):
apaaris's avatar
apaaris committed
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
        """
        Test the distributed inverse spherical harmonic transform.

        Parameters
        ----------
        nlat : int
            Number of latitude points
        nlon : int
            Number of longitude points
        batch_size : int
            Batch size
        num_chan : int
            Number of channels
        grid : str
            Grid type
        vector : bool
            Whether to use vector spherical harmonic transform
        tol : float
            Tolerance for numerical equivalence
        """
        
366
367
368
        B, C, H, W = batch_size, num_chan, nlat, nlon

        if vector:
Boris Bonev's avatar
Boris Bonev committed
369
370
            forward_transform_local = th.RealVectorSHT(nlat=H, nlon=W, grid=grid).to(self.device)
            backward_transform_local = th.InverseRealVectorSHT(nlat=H, nlon=W, grid=grid).to(self.device)
371
            backward_transform_dist = thd.DistributedInverseRealVectorSHT(nlat=H, nlon=W, grid=grid).to(self.device)
372
        else:
Boris Bonev's avatar
Boris Bonev committed
373
374
            forward_transform_local = th.RealSHT(nlat=H, nlon=W, grid=grid).to(self.device)
            backward_transform_local = th.InverseRealSHT(nlat=H, nlon=W, grid=grid).to(self.device)
375
376
377
378
379
380
381
382
383
384
385
            backward_transform_dist = thd.DistributedInverseRealSHT(nlat=H, nlon=W, grid=grid).to(self.device)

        # create tensors
        if vector:
            dummy_full = torch.randn((B, C, 2, H, W), dtype=torch.float32, device=self.device)
        else:
            dummy_full = torch.randn((B, C, H, W), dtype=torch.float32, device=self.device)
        inp_full = forward_transform_local(dummy_full)

        #############################################################
        # local transform
386
387
        #############################################################
        # FWD pass
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
        inp_full.requires_grad = True
        out_full = backward_transform_local(inp_full)

        # create grad for backward
        with torch.no_grad():
            # create full grad
            ograd_full = torch.randn_like(out_full)

        # BWD pass
        out_full.backward(ograd_full)

        # repeat once due to known irfft bug
        inp_full.grad = None
        out_full = backward_transform_local(inp_full)
        out_full.backward(ograd_full)
        igrad_full = inp_full.grad.clone()

        #############################################################
        # distributed transform
        #############################################################
        # FWD pass
        inp_local = self._split_helper(inp_full)
        inp_local.requires_grad = True
        out_local = backward_transform_dist(inp_local)

        # BWD pass
        ograd_local = self._split_helper(ograd_full)
        out_local = backward_transform_dist(inp_local)
        out_local.backward(ograd_local)
        igrad_local = inp_local.grad.clone()

        #############################################################
        # evaluate FWD pass
        #############################################################
        with torch.no_grad():
            out_gather_full = self._gather_helper_bwd(out_local, B, C, backward_transform_dist, vector)
424
            err = torch.mean(torch.norm(out_full - out_gather_full, p="fro", dim=(-1, -2)) / torch.norm(out_full, p="fro", dim=(-1, -2)))
425
426
427
428
429
430
431
432
433
            if self.world_rank == 0:
                print(f"final relative error of output: {err.item()}")
        self.assertTrue(err.item() <= tol)

        #############################################################
        # evaluate BWD pass
        #############################################################
        with torch.no_grad():
            igrad_gather_full = self._gather_helper_fwd(igrad_local, B, C, backward_transform_dist, vector)
434
            err = torch.mean(torch.norm(igrad_full - igrad_gather_full, p="fro", dim=(-1, -2)) / torch.norm(igrad_full, p="fro", dim=(-1, -2)))
435
436
437
438
            if self.world_rank == 0:
                print(f"final relative error of gradients: {err.item()}")
        self.assertTrue(err.item() <= tol)

439
440

if __name__ == "__main__":
441
    unittest.main()