rw_cuda.cu 1.96 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
#include "rw_cuda.h"

#include <ATen/cuda/CUDAContext.h>

#include "utils.cuh"

#define THREADS 1024
#define BLOCKS(N) (N + THREADS - 1) / THREADS

__global__ void uniform_random_walk_kernel(const int64_t *rowptr,
                                           const int64_t *col,
                                           const int64_t *start,
                                           const float *rand, int64_t *out,
                                           int64_t walk_length, int64_t numel) {
  const int64_t thread_idx = blockIdx.x * blockDim.x + threadIdx.x;

  if (thread_idx < numel) {
    out[thread_idx] = start[thread_idx];

    int64_t row_start, row_end, i, cur;
    for (int64_t l = 1; l <= walk_length; l++) {
      i = (l - 1) * numel + thread_idx;
      cur = out[i];
      row_start = rowptr[cur], row_end = rowptr[cur + 1];

rusty1s's avatar
rusty1s committed
26
27
28
29
30
31
      if (row_end - row_start == 0) {
        out[l * numel + thread_idx] = cur;
      } else {
        out[l * numel + thread_idx] =
            col[row_start + int64_t(rand[i] * (row_end - row_start))];
      }
rusty1s's avatar
rusty1s committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
    }
  }
}

torch::Tensor random_walk_cuda(torch::Tensor rowptr, torch::Tensor col,
                               torch::Tensor start, int64_t walk_length,
                               double p, double q) {
  CHECK_CUDA(rowptr);
  CHECK_CUDA(col);
  CHECK_CUDA(start);
  cudaSetDevice(rowptr.get_device());

  CHECK_INPUT(rowptr.dim() == 1);
  CHECK_INPUT(col.dim() == 1);
  CHECK_INPUT(start.dim() == 1);

  auto rand = torch::rand({start.size(0), walk_length},
                          start.options().dtype(torch::kFloat));
rusty1s's avatar
rusty1s committed
50
  auto out = torch::empty({walk_length + 1, start.size(0)}, start.options());
rusty1s's avatar
rusty1s committed
51
52
53
54
55
56
57
58
59

  auto stream = at::cuda::getCurrentCUDAStream();
  uniform_random_walk_kernel<<<BLOCKS(start.numel()), THREADS, 0, stream>>>(
      rowptr.data_ptr<int64_t>(), col.data_ptr<int64_t>(),
      start.data_ptr<int64_t>(), rand.data_ptr<float>(),
      out.data_ptr<int64_t>(), walk_length, start.numel());

  return out.t().contiguous();
}