rw_cuda.cu 1.86 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
#include "rw_cuda.h"

#include <ATen/cuda/CUDAContext.h>

#include "utils.cuh"

#define THREADS 1024
#define BLOCKS(N) (N + THREADS - 1) / THREADS

__global__ void uniform_random_walk_kernel(const int64_t *rowptr,
                                           const int64_t *col,
                                           const int64_t *start,
                                           const float *rand, int64_t *out,
                                           int64_t walk_length, int64_t numel) {
  const int64_t thread_idx = blockIdx.x * blockDim.x + threadIdx.x;

  if (thread_idx < numel) {
    out[thread_idx] = start[thread_idx];

    int64_t row_start, row_end, i, cur;
    for (int64_t l = 1; l <= walk_length; l++) {
      i = (l - 1) * numel + thread_idx;
      cur = out[i];
      row_start = rowptr[cur], row_end = rowptr[cur + 1];

rusty1s's avatar
compile  
rusty1s committed
26
      out[l * numel + thread_idx] =
rusty1s's avatar
rusty1s committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
          col[row_start + int64_t(rand[i] * (row_end - row_start))];
    }
  }
}

torch::Tensor random_walk_cuda(torch::Tensor rowptr, torch::Tensor col,
                               torch::Tensor start, int64_t walk_length,
                               double p, double q) {
  CHECK_CUDA(rowptr);
  CHECK_CUDA(col);
  CHECK_CUDA(start);
  cudaSetDevice(rowptr.get_device());

  CHECK_INPUT(rowptr.dim() == 1);
  CHECK_INPUT(col.dim() == 1);
  CHECK_INPUT(start.dim() == 1);

  auto rand = torch::rand({start.size(0), walk_length},
                          start.options().dtype(torch::kFloat));
  auto out = torch::full({walk_length + 1, start.size(0)}, -1, start.options());

  auto stream = at::cuda::getCurrentCUDAStream();
  uniform_random_walk_kernel<<<BLOCKS(start.numel()), THREADS, 0, stream>>>(
      rowptr.data_ptr<int64_t>(), col.data_ptr<int64_t>(),
      start.data_ptr<int64_t>(), rand.data_ptr<float>(),
      out.data_ptr<int64_t>(), walk_length, start.numel());

  return out.t().contiguous();
}