test_rw.py 2.53 KB
Newer Older
yangzhong's avatar
yangzhong committed
1
2
3
import pytest
import torch
from torch_cluster import random_walk
limm's avatar
limm committed
4
from torch_cluster.testing import devices, tensor
yangzhong's avatar
yangzhong committed
5
6
7


@pytest.mark.parametrize('device', devices)
limm's avatar
limm committed
8
def test_rw_large(device):
yangzhong's avatar
yangzhong committed
9
10
11
12
13
14
15
16
17
18
19
20
21
22
    row = tensor([0, 1, 1, 1, 2, 2, 3, 3, 4, 4], torch.long, device)
    col = tensor([1, 0, 2, 3, 1, 4, 1, 4, 2, 3], torch.long, device)
    start = tensor([0, 1, 2, 3, 4], torch.long, device)
    walk_length = 10

    out = random_walk(row, col, start, walk_length)
    assert out[:, 0].tolist() == start.tolist()

    for n in range(start.size(0)):
        cur = start[n].item()
        for i in range(1, walk_length):
            assert out[n, i].item() in col[row == cur].tolist()
            cur = out[n, i].item()

limm's avatar
limm committed
23
24
25

@pytest.mark.parametrize('device', devices)
def test_rw_small(device):
yangzhong's avatar
yangzhong committed
26
27
28
29
30
31
32
    row = tensor([0, 1], torch.long, device)
    col = tensor([1, 0], torch.long, device)
    start = tensor([0, 1, 2], torch.long, device)
    walk_length = 4

    out = random_walk(row, col, start, walk_length, num_nodes=3)
    assert out.tolist() == [[0, 1, 0, 1, 0], [1, 0, 1, 0, 1], [2, 2, 2, 2, 2]]
limm's avatar
limm committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

    jit = torch.jit.script(random_walk)
    assert torch.equal(jit(row, col, start, walk_length, num_nodes=3), out)


@pytest.mark.parametrize('device', devices)
def test_rw_large_with_edge_indices(device):
    row = tensor([0, 1, 1, 1, 2, 2, 3, 3, 4, 4], torch.long, device)
    col = tensor([1, 0, 2, 3, 1, 4, 1, 4, 2, 3], torch.long, device)
    start = tensor([0, 1, 2, 3, 4], torch.long, device)
    walk_length = 10

    node_seq, edge_seq = random_walk(
        row,
        col,
        start,
        walk_length,
        return_edge_indices=True,
    )
    assert node_seq[:, 0].tolist() == start.tolist()

    for n in range(start.size(0)):
        cur = start[n].item()
        for i in range(1, walk_length):
            assert node_seq[n, i].item() in col[row == cur].tolist()
            cur = node_seq[n, i].item()

    assert (edge_seq != -1).all()


@pytest.mark.parametrize('device', devices)
def test_rw_small_with_edge_indices(device):
    row = tensor([0, 1], torch.long, device)
    col = tensor([1, 0], torch.long, device)
    start = tensor([0, 1, 2], torch.long, device)
    walk_length = 4

    node_seq, edge_seq = random_walk(
        row,
        col,
        start,
        walk_length,
        num_nodes=3,
        return_edge_indices=True,
    )
    assert node_seq.tolist() == [
        [0, 1, 0, 1, 0],
        [1, 0, 1, 0, 1],
        [2, 2, 2, 2, 2],
    ]
    assert edge_seq.tolist() == [
        [0, 1, 0, 1],
        [1, 0, 1, 0],
        [-1, -1, -1, -1],
    ]