Commit 4d4e064b authored by yangzhong's avatar yangzhong
Browse files

push 1.6.0 version

parent 6907f8b7
cmake_minimum_required(VERSION 3.0)
project(torchcluster)
set(CMAKE_CXX_STANDARD 14)
set(TORCHCLUSTER_VERSION 1.6.0)
option(WITH_CUDA "Enable CUDA support" OFF)
if(WITH_CUDA)
enable_language(CUDA)
add_definitions(-D__CUDA_NO_HALF_OPERATORS__)
add_definitions(-DWITH_CUDA)
set(CMAKE_CUDA_FLAGS "${CMAKE_CUDA_FLAGS} --expt-relaxed-constexpr")
endif()
find_package(Python3 COMPONENTS Development)
find_package(Torch REQUIRED)
file(GLOB HEADERS csrc/cluster.h)
file(GLOB OPERATOR_SOURCES csrc/cpu/*.h csrc/cpu/*.cpp csrc/*.cpp)
if(WITH_CUDA)
file(GLOB OPERATOR_SOURCES ${OPERATOR_SOURCES} csrc/cuda/*.h csrc/cuda/*.cu)
endif()
add_library(${PROJECT_NAME} SHARED ${OPERATOR_SOURCES})
target_link_libraries(${PROJECT_NAME} PRIVATE ${TORCH_LIBRARIES} Python3::Python)
set_target_properties(${PROJECT_NAME} PROPERTIES EXPORT_NAME TorchCluster)
target_include_directories(${PROJECT_NAME} INTERFACE
$<BUILD_INTERFACE:${HEADERS}>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}>)
include(GNUInstallDirs)
include(CMakePackageConfigHelpers)
set(TORCHCLUSTER_CMAKECONFIG_INSTALL_DIR "share/cmake/TorchCluster" CACHE STRING "install path for TorchClusterConfig.cmake")
configure_package_config_file(cmake/TorchClusterConfig.cmake.in
"${CMAKE_CURRENT_BINARY_DIR}/TorchClusterConfig.cmake"
INSTALL_DESTINATION ${TORCHCLUSTER_CMAKECONFIG_INSTALL_DIR})
write_basic_package_version_file(${CMAKE_CURRENT_BINARY_DIR}/TorchClusterConfigVersion.cmake
VERSION ${TORCHCLUSTER_VERSION}
COMPATIBILITY AnyNewerVersion)
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/TorchClusterConfig.cmake
${CMAKE_CURRENT_BINARY_DIR}/TorchClusterConfigVersion.cmake
DESTINATION ${TORCHCLUSTER_CMAKECONFIG_INSTALL_DIR})
install(TARGETS ${PROJECT_NAME}
EXPORT TorchClusterTargets
LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR}
)
install(EXPORT TorchClusterTargets
NAMESPACE TorchCluster::
DESTINATION ${TORCHCLUSTER_CMAKECONFIG_INSTALL_DIR})
install(FILES ${HEADERS} DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}/${PROJECT_NAME})
install(FILES
csrc/cpu/fps_cpu.h
csrc/cpu/graclus_cpu.h
csrc/cpu/grid_cpu.h
csrc/cpu/rw_cpu.h
csrc/cpu/sampler_cpu.h
DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}/${PROJECT_NAME}/cpu)
if(WITH_CUDA)
install(FILES
csrc/cuda/fps_cuda.h
csrc/cuda/graclus_cuda.h
csrc/cuda/grid_cuda.h
csrc/cuda/knn_cuda.h
csrc/cuda/nearest_cuda.h
csrc/cuda/radius_cuda.h
csrc/cuda/rw_cuda.h
DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}/${PROJECT_NAME}/cuda)
endif()
if(WITH_CUDA)
set_property(TARGET torch_cuda PROPERTY INTERFACE_COMPILE_OPTIONS "")
set_property(TARGET torch_cpu PROPERTY INTERFACE_COMPILE_OPTIONS "")
endif()
Metadata-Version: 2.1
Name: torch_cluster
Version: 1.6.0
Summary: PyTorch Extension Library of Optimized Graph Cluster Algorithms
Home-page: https://github.com/rusty1s/pytorch_cluster
Author: Matthias Fey
Author-email: matthias.fey@tu-dortmund.de
License: UNKNOWN
Download-URL: https://github.com/rusty1s/pytorch_cluster/archive/1.6.0.tar.gz
Description: [pypi-image]: https://badge.fury.io/py/torch-cluster.svg
[pypi-url]: https://pypi.python.org/pypi/torch-cluster
[testing-image]: https://github.com/rusty1s/pytorch_cluster/actions/workflows/testing.yml/badge.svg
[testing-url]: https://github.com/rusty1s/pytorch_cluster/actions/workflows/testing.yml
[linting-image]: https://github.com/rusty1s/pytorch_cluster/actions/workflows/linting.yml/badge.svg
[linting-url]: https://github.com/rusty1s/pytorch_cluster/actions/workflows/linting.yml
[coverage-image]: https://codecov.io/gh/rusty1s/pytorch_cluster/branch/master/graph/badge.svg
[coverage-url]: https://codecov.io/github/rusty1s/pytorch_cluster?branch=master
# PyTorch Cluster
[![PyPI Version][pypi-image]][pypi-url]
[![Testing Status][testing-image]][testing-url]
[![Linting Status][linting-image]][linting-url]
[![Code Coverage][coverage-image]][coverage-url]
--------------------------------------------------------------------------------
This package consists of a small extension library of highly optimized graph cluster algorithms for the use in [PyTorch](http://pytorch.org/).
The package consists of the following clustering algorithms:
* **[Graclus](#graclus)** from Dhillon *et al.*: [Weighted Graph Cuts without Eigenvectors: A Multilevel Approach](http://www.cs.utexas.edu/users/inderjit/public_papers/multilevel_pami.pdf) (PAMI 2007)
* **[Voxel Grid Pooling](#voxelgrid)** from, *e.g.*, Simonovsky and Komodakis: [Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs](https://arxiv.org/abs/1704.02901) (CVPR 2017)
* **[Iterative Farthest Point Sampling](#farthestpointsampling)** from, *e.g.* Qi *et al.*: [PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space](https://arxiv.org/abs/1706.02413) (NIPS 2017)
* **[k-NN](#knn-graph)** and **[Radius](#radius-graph)** graph generation
* Clustering based on **[Nearest](#nearest)** points
* **[Random Walk Sampling](#randomwalk-sampling)** from, *e.g.*, Grover and Leskovec: [node2vec: Scalable Feature Learning for Networks](https://arxiv.org/abs/1607.00653) (KDD 2016)
All included operations work on varying data types and are implemented both for CPU and GPU.
## Installation
### Anaconda
**Update:** You can now install `pytorch-cluster` via [Anaconda](https://anaconda.org/pyg/pytorch-cluster) for all major OS/PyTorch/CUDA combinations 🤗
Given that you have [`pytorch >= 1.8.0` installed](https://pytorch.org/get-started/locally/), simply run
```
conda install pytorch-cluster -c pyg
```
### Binaries
We alternatively provide pip wheels for all major OS/PyTorch/CUDA combinations, see [here](https://data.pyg.org/whl).
#### PyTorch 1.11
To install the binaries for PyTorch 1.11.0, simply run
```
pip install torch-cluster -f https://data.pyg.org/whl/torch-1.11.0+${CUDA}.html
```
where `${CUDA}` should be replaced by either `cpu`, `cu102`, `cu113`, or `cu115` depending on your PyTorch installation.
| | `cpu` | `cu102` | `cu113` | `cu115` |
|-------------|-------|---------|---------|---------|
| **Linux** | ✅ | ✅ | ✅ | ✅ |
| **Windows** | ✅ | | ✅ | ✅ |
| **macOS** | ✅ | | | |
#### PyTorch 1.10
To install the binaries for PyTorch 1.10.0, PyTorch 1.10.1 and PyTorch 1.10.2, simply run
```
pip install torch-cluster -f https://data.pyg.org/whl/torch-1.10.0+${CUDA}.html
```
where `${CUDA}` should be replaced by either `cpu`, `cu102`, `cu111`, or `cu113` depending on your PyTorch installation.
| | `cpu` | `cu102` | `cu111` | `cu113` |
|-------------|-------|---------|---------|---------|
| **Linux** | ✅ | ✅ | ✅ | ✅ |
| **Windows** | ✅ | ✅ | ✅ | ✅ |
| **macOS** | ✅ | | | |
**Note:** Binaries of older versions are also provided for PyTorch 1.4.0, PyTorch 1.5.0, PyTorch 1.6.0, PyTorch 1.7.0/1.7.1, PyTorch 1.8.0/1.8.1 and PyTorch 1.9.0 (following the same procedure).
For older versions, you might need to explicitly specify the latest supported version number in order to prevent a manual installation from source.
You can look up the latest supported version number [here](https://data.pyg.org/whl).
### From source
Ensure that at least PyTorch 1.4.0 is installed and verify that `cuda/bin` and `cuda/include` are in your `$PATH` and `$CPATH` respectively, *e.g.*:
```
$ python -c "import torch; print(torch.__version__)"
>>> 1.4.0
$ python -c "import torch; print(torch.__version__)"
>>> 1.1.0
$ echo $PATH
>>> /usr/local/cuda/bin:...
$ echo $CPATH
>>> /usr/local/cuda/include:...
```
Then run:
```
pip install torch-cluster
```
When running in a docker container without NVIDIA driver, PyTorch needs to evaluate the compute capabilities and may fail.
In this case, ensure that the compute capabilities are set via `TORCH_CUDA_ARCH_LIST`, *e.g.*:
```
export TORCH_CUDA_ARCH_LIST = "6.0 6.1 7.2+PTX 7.5+PTX"
```
## Functions
### Graclus
A greedy clustering algorithm of picking an unmarked vertex and matching it with one its unmarked neighbors (that maximizes its edge weight).
The GPU algorithm is adapted from Fagginger Auer and Bisseling: [A GPU Algorithm for Greedy Graph Matching](http://www.staff.science.uu.nl/~bisse101/Articles/match12.pdf) (LNCS 2012)
```python
import torch
from torch_cluster import graclus_cluster
row = torch.tensor([0, 1, 1, 2])
col = torch.tensor([1, 0, 2, 1])
weight = torch.tensor([1., 1., 1., 1.]) # Optional edge weights.
cluster = graclus_cluster(row, col, weight)
```
```
print(cluster)
tensor([0, 0, 1])
```
### VoxelGrid
A clustering algorithm, which overlays a regular grid of user-defined size over a point cloud and clusters all points within a voxel.
```python
import torch
from torch_cluster import grid_cluster
pos = torch.tensor([[0., 0.], [11., 9.], [2., 8.], [2., 2.], [8., 3.]])
size = torch.Tensor([5, 5])
cluster = grid_cluster(pos, size)
```
```
print(cluster)
tensor([0, 5, 3, 0, 1])
```
### FarthestPointSampling
A sampling algorithm, which iteratively samples the most distant point with regard to the rest points.
```python
import torch
from torch_cluster import fps
x = torch.tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.]])
batch = torch.tensor([0, 0, 0, 0])
index = fps(x, batch, ratio=0.5, random_start=False)
```
```
print(index)
tensor([0, 3])
```
### kNN-Graph
Computes graph edges to the nearest *k* points.
**Args:**
* **x** *(Tensor)*: Node feature matrix of shape `[N, F]`.
* **k** *(int)*: The number of neighbors.
* **batch** *(LongTensor, optional)*: Batch vector of shape `[N]`, which assigns each node to a specific example. `batch` needs to be sorted. (default: `None`)
* **loop** *(bool, optional)*: If `True`, the graph will contain self-loops. (default: `False`)
* **flow** *(string, optional)*: The flow direction when using in combination with message passing (`"source_to_target"` or `"target_to_source"`). (default: `"source_to_target"`)
* **cosine** *(boolean, optional)*: If `True`, will use the Cosine distance instead of Euclidean distance to find nearest neighbors. (default: `False`)
* **num_workers** *(int)*: Number of workers to use for computation. Has no effect in case `batch` is not `None`, or the input lies on the GPU. (default: `1`)
```python
import torch
from torch_cluster import knn_graph
x = torch.tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.]])
batch = torch.tensor([0, 0, 0, 0])
edge_index = knn_graph(x, k=2, batch=batch, loop=False)
```
```
print(edge_index)
tensor([[1, 2, 0, 3, 0, 3, 1, 2],
[0, 0, 1, 1, 2, 2, 3, 3]])
```
### Radius-Graph
Computes graph edges to all points within a given distance.
**Args:**
* **x** *(Tensor)*: Node feature matrix of shape `[N, F]`.
* **r** *(float)*: The radius.
* **batch** *(LongTensor, optional)*: Batch vector of shape `[N]`, which assigns each node to a specific example. `batch` needs to be sorted. (default: `None`)
* **loop** *(bool, optional)*: If `True`, the graph will contain self-loops. (default: `False`)
* **max_num_neighbors** *(int, optional)*: The maximum number of neighbors to return for each element. If the number of actual neighbors is greater than `max_num_neighbors`, returned neighbors are picked randomly. (default: `32`)
* **flow** *(string, optional)*: The flow direction when using in combination with message passing (`"source_to_target"` or `"target_to_source"`). (default: `"source_to_target"`)
* **num_workers** *(int)*: Number of workers to use for computation. Has no effect in case `batch` is not `None`, or the input lies on the GPU. (default: `1`)
```python
import torch
from torch_cluster import radius_graph
x = torch.tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.]])
batch = torch.tensor([0, 0, 0, 0])
edge_index = radius_graph(x, r=2.5, batch=batch, loop=False)
```
```
print(edge_index)
tensor([[1, 2, 0, 3, 0, 3, 1, 2],
[0, 0, 1, 1, 2, 2, 3, 3]])
```
### Nearest
Clusters points in *x* together which are nearest to a given query point in *y*.
`batch_{x,y}` vectors need to be sorted.
```python
import torch
from torch_cluster import nearest
x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]])
batch_x = torch.tensor([0, 0, 0, 0])
y = torch.Tensor([[-1, 0], [1, 0]])
batch_y = torch.tensor([0, 0])
cluster = nearest(x, y, batch_x, batch_y)
```
```
print(cluster)
tensor([0, 0, 1, 1])
```
### RandomWalk-Sampling
Samples random walks of length `walk_length` from all node indices in `start` in the graph given by `(row, col)`.
```python
import torch
from torch_cluster import random_walk
row = torch.tensor([0, 1, 1, 1, 2, 2, 3, 3, 4, 4])
col = torch.tensor([1, 0, 2, 3, 1, 4, 1, 4, 2, 3])
start = torch.tensor([0, 1, 2, 3, 4])
walk = random_walk(row, col, start, walk_length=3)
```
```
print(walk)
tensor([[0, 1, 2, 4],
[1, 3, 4, 2],
[2, 4, 2, 1],
[3, 4, 2, 4],
[4, 3, 1, 0]])
```
## Running tests
```
pytest
```
## C++ API
`torch-cluster` also offers a C++ API that contains C++ equivalent of python models.
```
mkdir build
cd build
# Add -DWITH_CUDA=on support for the CUDA if needed
cmake ..
make
make install
```
Keywords: pytorch,geometric-deep-learning,graph-neural-networks,cluster-algorithms
Platform: UNKNOWN
Classifier: Development Status :: 5 - Production/Stable
Classifier: License :: OSI Approved :: MIT License
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 3.7
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3 :: Only
Requires-Python: >=3.7
Description-Content-Type: text/markdown
Provides-Extra: test
# <div align="center"><strong>torch-cluster-1.6.0</strong></div>
## 简介
torch-cluster是一个用于聚类的Python库,它使用PyTorch框架进行深度学习。它提供了一种简单而强大的方法来对数据集进行聚类,特别是对于大规模数据集。
[pypi-image]: https://badge.fury.io/py/torch-cluster.svg
[pypi-url]: https://pypi.python.org/pypi/torch-cluster
[testing-image]: https://github.com/rusty1s/pytorch_cluster/actions/workflows/testing.yml/badge.svg
[testing-url]: https://github.com/rusty1s/pytorch_cluster/actions/workflows/testing.yml
[linting-image]: https://github.com/rusty1s/pytorch_cluster/actions/workflows/linting.yml/badge.svg
[linting-url]: https://github.com/rusty1s/pytorch_cluster/actions/workflows/linting.yml
[coverage-image]: https://codecov.io/gh/rusty1s/pytorch_cluster/branch/master/graph/badge.svg
[coverage-url]: https://codecov.io/github/rusty1s/pytorch_cluster?branch=master
## 依赖安装
+ pytorch1.10或者pytorch1.13 以及对应的torchvision(建议dtk-22.04.2、dtk-23.04与dtk-23.10)
+ python 3.7-3.10
# PyTorch Cluster
### 1、使用源码编译方式安装
[![PyPI Version][pypi-image]][pypi-url]
[![Testing Status][testing-image]][testing-url]
[![Linting Status][linting-image]][linting-url]
[![Code Coverage][coverage-image]][coverage-url]
#### 编译环境准备
提供2种环境准备方式:
--------------------------------------------------------------------------------
1. 基于光源pytorch基础镜像环境:镜像下载地址:[https://sourcefind.cn/#/image/dcu/pytorch](https://sourcefind.cn/#/image/dcu/pytorch),根据pytorch、python、dtk及系统下载对应的镜像版本。
This package consists of a small extension library of highly optimized graph cluster algorithms for the use in [PyTorch](http://pytorch.org/).
The package consists of the following clustering algorithms:
* **[Graclus](#graclus)** from Dhillon *et al.*: [Weighted Graph Cuts without Eigenvectors: A Multilevel Approach](http://www.cs.utexas.edu/users/inderjit/public_papers/multilevel_pami.pdf) (PAMI 2007)
* **[Voxel Grid Pooling](#voxelgrid)** from, *e.g.*, Simonovsky and Komodakis: [Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs](https://arxiv.org/abs/1704.02901) (CVPR 2017)
* **[Iterative Farthest Point Sampling](#farthestpointsampling)** from, *e.g.* Qi *et al.*: [PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space](https://arxiv.org/abs/1706.02413) (NIPS 2017)
* **[k-NN](#knn-graph)** and **[Radius](#radius-graph)** graph generation
* Clustering based on **[Nearest](#nearest)** points
* **[Random Walk Sampling](#randomwalk-sampling)** from, *e.g.*, Grover and Leskovec: [node2vec: Scalable Feature Learning for Networks](https://arxiv.org/abs/1607.00653) (KDD 2016)
All included operations work on varying data types and are implemented both for CPU and GPU.
## Installation
### Anaconda
**Update:** You can now install `pytorch-cluster` via [Anaconda](https://anaconda.org/pyg/pytorch-cluster) for all major OS/PyTorch/CUDA combinations 🤗
Given that you have [`pytorch >= 1.8.0` installed](https://pytorch.org/get-started/locally/), simply run
```
conda install pytorch-cluster -c pyg
```
### Binaries
We alternatively provide pip wheels for all major OS/PyTorch/CUDA combinations, see [here](https://data.pyg.org/whl).
#### PyTorch 1.11
To install the binaries for PyTorch 1.11.0, simply run
```
pip install torch-cluster -f https://data.pyg.org/whl/torch-1.11.0+${CUDA}.html
```
where `${CUDA}` should be replaced by either `cpu`, `cu102`, `cu113`, or `cu115` depending on your PyTorch installation.
| | `cpu` | `cu102` | `cu113` | `cu115` |
|-------------|-------|---------|---------|---------|
| **Linux** | ✅ | ✅ | ✅ | ✅ |
| **Windows** | ✅ | | ✅ | ✅ |
| **macOS** | ✅ | | | |
#### PyTorch 1.10
To install the binaries for PyTorch 1.10.0, PyTorch 1.10.1 and PyTorch 1.10.2, simply run
2. 基于现有python环境:安装pytorch和torchvision,whl包下载目录:[https://cancon.hpccube.com:65024/4/main/pytorch](https://cancon.hpccube.com:65024/4/main/pytorch)[https://cancon.hpccube.com:65024/4/main/vision](https://cancon.hpccube.com:65024/4/main/vision),根据python、dtk版本,下载对应pytorch和torchvision的whl包。安装命令如下:
```shell
pip install torch* (下载的torch的whl包)
pip install torchvision* (下载的torchvision的whl包)
pip install setuptools==59.5.0 wheel
```
pip install torch-cluster -f https://data.pyg.org/whl/torch-1.10.0+${CUDA}.html
```
where `${CUDA}` should be replaced by either `cpu`, `cu102`, `cu111`, or `cu113` depending on your PyTorch installation.
| | `cpu` | `cu102` | `cu111` | `cu113` |
|-------------|-------|---------|---------|---------|
| **Linux** | ✅ | ✅ | ✅ | ✅ |
| **Windows** | ✅ | ✅ | ✅ | ✅ |
| **macOS** | ✅ | | | |
**Note:** Binaries of older versions are also provided for PyTorch 1.4.0, PyTorch 1.5.0, PyTorch 1.6.0, PyTorch 1.7.0/1.7.1, PyTorch 1.8.0/1.8.1 and PyTorch 1.9.0 (following the same procedure).
For older versions, you might need to explicitly specify the latest supported version number in order to prevent a manual installation from source.
You can look up the latest supported version number [here](https://data.pyg.org/whl).
### From source
Ensure that at least PyTorch 1.4.0 is installed and verify that `cuda/bin` and `cuda/include` are in your `$PATH` and `$CPATH` respectively, *e.g.*:
#### 源码编译安装
- 代码下载
```shell
git clone http://developer.hpccube.com/codes/aicomponent/torch-cluster # 根据编译需要切换分支
```
- 源码编译(进入torch-cluster目录):
$ python -c "import torch; print(torch.__version__)"
>>> 1.4.0
$ python -c "import torch; print(torch.__version__)"
>>> 1.1.0
$ echo $PATH
>>> /usr/local/cuda/bin:...
$ echo $CPATH
>>> /usr/local/cuda/include:...
```
export C_INCLUDE_PATH=/public/software/apps/DeepLearning/PyTorch_Lib/gflags-2.1.2-build/include:$C_INCLUDE_PATH
export CPLUS_INCLUDE_PATH=/public/software/apps/DeepLearning/PyTorch_Lib/gflags-2.1.2-build/include:$CPLUS_INCLUDE_PATH
export C_INCLUDE_PATH=/public/software/apps/DeepLearning/PyTorch_Lib/glog-build/include:$C_INCLUDE_PATH
export CPLUS_INCLUDE_PATH=/public/software/apps/DeepLearning/PyTorch_Lib/glog-build/include:$CPLUS_INCLUDE_PATH
export C_INCLUDE_PATH=$ROCM_PATH/rocrand/include:$C_INCLUDE_PATH
export CPLUS_INCLUDE_PATH=$ROCM_PATH/rocrand/include:$CPLUS_INCLUDE_PATH
export LD_LIBRARY_PATH=$ROCM_PATH/rocrand/lib:$LD_LIBRARY_PATH
export FORCE_ONLY_HIP=1
export CC=hipcc
export CXX=hipcc
python setup.py install
Then run:
```
pip install torch-cluster
```
#### 注意事项
+ 若使用pip install下载安装过慢,可添加pypi清华源:-i https://pypi.tuna.tsinghua.edu.cn/simple/
+ ROCM_PATH为dtk的路径,默认为/opt/dtk
## 验证
When running in a docker container without NVIDIA driver, PyTorch needs to evaluate the compute capabilities and may fail.
In this case, ensure that the compute capabilities are set via `TORCH_CUDA_ARCH_LIST`, *e.g.*:
```
export TORCH_CUDA_ARCH_LIST = "6.0 6.1 7.2+PTX 7.5+PTX"
```
## Functions
### Graclus
A greedy clustering algorithm of picking an unmarked vertex and matching it with one its unmarked neighbors (that maximizes its edge weight).
The GPU algorithm is adapted from Fagginger Auer and Bisseling: [A GPU Algorithm for Greedy Graph Matching](http://www.staff.science.uu.nl/~bisse101/Articles/match12.pdf) (LNCS 2012)
```python
import torch
......@@ -62,10 +133,171 @@ print(cluster)
tensor([0, 0, 1])
```
## Known Issue
- 该库没有基于cpu环境修改,仅支持dcu,请在有dcu卡的环境运行。
- 如需完整使用所有pyg功能,请pip install torch-geometric
### VoxelGrid
A clustering algorithm, which overlays a regular grid of user-defined size over a point cloud and clusters all points within a voxel.
```python
import torch
from torch_cluster import grid_cluster
pos = torch.tensor([[0., 0.], [11., 9.], [2., 8.], [2., 2.], [8., 3.]])
size = torch.Tensor([5, 5])
cluster = grid_cluster(pos, size)
```
```
print(cluster)
tensor([0, 5, 3, 0, 1])
```
### FarthestPointSampling
A sampling algorithm, which iteratively samples the most distant point with regard to the rest points.
```python
import torch
from torch_cluster import fps
x = torch.tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.]])
batch = torch.tensor([0, 0, 0, 0])
index = fps(x, batch, ratio=0.5, random_start=False)
```
```
print(index)
tensor([0, 3])
```
### kNN-Graph
Computes graph edges to the nearest *k* points.
**Args:**
* **x** *(Tensor)*: Node feature matrix of shape `[N, F]`.
* **k** *(int)*: The number of neighbors.
* **batch** *(LongTensor, optional)*: Batch vector of shape `[N]`, which assigns each node to a specific example. `batch` needs to be sorted. (default: `None`)
* **loop** *(bool, optional)*: If `True`, the graph will contain self-loops. (default: `False`)
* **flow** *(string, optional)*: The flow direction when using in combination with message passing (`"source_to_target"` or `"target_to_source"`). (default: `"source_to_target"`)
* **cosine** *(boolean, optional)*: If `True`, will use the Cosine distance instead of Euclidean distance to find nearest neighbors. (default: `False`)
* **num_workers** *(int)*: Number of workers to use for computation. Has no effect in case `batch` is not `None`, or the input lies on the GPU. (default: `1`)
```python
import torch
from torch_cluster import knn_graph
x = torch.tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.]])
batch = torch.tensor([0, 0, 0, 0])
edge_index = knn_graph(x, k=2, batch=batch, loop=False)
```
```
print(edge_index)
tensor([[1, 2, 0, 3, 0, 3, 1, 2],
[0, 0, 1, 1, 2, 2, 3, 3]])
```
### Radius-Graph
Computes graph edges to all points within a given distance.
**Args:**
* **x** *(Tensor)*: Node feature matrix of shape `[N, F]`.
* **r** *(float)*: The radius.
* **batch** *(LongTensor, optional)*: Batch vector of shape `[N]`, which assigns each node to a specific example. `batch` needs to be sorted. (default: `None`)
* **loop** *(bool, optional)*: If `True`, the graph will contain self-loops. (default: `False`)
* **max_num_neighbors** *(int, optional)*: The maximum number of neighbors to return for each element. If the number of actual neighbors is greater than `max_num_neighbors`, returned neighbors are picked randomly. (default: `32`)
* **flow** *(string, optional)*: The flow direction when using in combination with message passing (`"source_to_target"` or `"target_to_source"`). (default: `"source_to_target"`)
* **num_workers** *(int)*: Number of workers to use for computation. Has no effect in case `batch` is not `None`, or the input lies on the GPU. (default: `1`)
```python
import torch
from torch_cluster import radius_graph
x = torch.tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.]])
batch = torch.tensor([0, 0, 0, 0])
edge_index = radius_graph(x, r=2.5, batch=batch, loop=False)
```
```
print(edge_index)
tensor([[1, 2, 0, 3, 0, 3, 1, 2],
[0, 0, 1, 1, 2, 2, 3, 3]])
```
### Nearest
Clusters points in *x* together which are nearest to a given query point in *y*.
`batch_{x,y}` vectors need to be sorted.
```python
import torch
from torch_cluster import nearest
x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]])
batch_x = torch.tensor([0, 0, 0, 0])
y = torch.Tensor([[-1, 0], [1, 0]])
batch_y = torch.tensor([0, 0])
cluster = nearest(x, y, batch_x, batch_y)
```
```
print(cluster)
tensor([0, 0, 1, 1])
```
### RandomWalk-Sampling
Samples random walks of length `walk_length` from all node indices in `start` in the graph given by `(row, col)`.
```python
import torch
from torch_cluster import random_walk
row = torch.tensor([0, 1, 1, 1, 2, 2, 3, 3, 4, 4])
col = torch.tensor([1, 0, 2, 3, 1, 4, 1, 4, 2, 3])
start = torch.tensor([0, 1, 2, 3, 4])
walk = random_walk(row, col, start, walk_length=3)
```
```
print(walk)
tensor([[0, 1, 2, 4],
[1, 3, 4, 2],
[2, 4, 2, 1],
[3, 4, 2, 4],
[4, 3, 1, 0]])
```
## Running tests
```
pytest
```
## C++ API
`torch-cluster` also offers a C++ API that contains C++ equivalent of python models.
```
mkdir build
cd build
# Add -DWITH_CUDA=on support for the CUDA if needed
cmake ..
make
make install
```
### Compile the python library
you can compile the Python wrapper which uses [pybind11](https://github.com/pybind/pybind11). This step requires the Python development libraries to be installed on the system.
```
python setup.py bdist_wheel
pip install dist/*.whl
```
## 参考资料
- [README_ORIGIN](README_ORIGIN.md)
- [https://pypi.org/project/torch-cluster/1.6.0/](https://pypi.org/project/torch-cluster/1.6.0/)
[pypi-image]: https://badge.fury.io/py/torch-cluster.svg
[pypi-url]: https://pypi.python.org/pypi/torch-cluster
[testing-image]: https://github.com/rusty1s/pytorch_cluster/actions/workflows/testing.yml/badge.svg
[testing-url]: https://github.com/rusty1s/pytorch_cluster/actions/workflows/testing.yml
[linting-image]: https://github.com/rusty1s/pytorch_cluster/actions/workflows/linting.yml/badge.svg
[linting-url]: https://github.com/rusty1s/pytorch_cluster/actions/workflows/linting.yml
[coverage-image]: https://codecov.io/gh/rusty1s/pytorch_cluster/branch/master/graph/badge.svg
[coverage-url]: https://codecov.io/github/rusty1s/pytorch_cluster?branch=master
# PyTorch Cluster
[![PyPI Version][pypi-image]][pypi-url]
[![Testing Status][testing-image]][testing-url]
[![Linting Status][linting-image]][linting-url]
[![Code Coverage][coverage-image]][coverage-url]
--------------------------------------------------------------------------------
This package consists of a small extension library of highly optimized graph cluster algorithms for the use in [PyTorch](http://pytorch.org/).
The package consists of the following clustering algorithms:
* **[Graclus](#graclus)** from Dhillon *et al.*: [Weighted Graph Cuts without Eigenvectors: A Multilevel Approach](http://www.cs.utexas.edu/users/inderjit/public_papers/multilevel_pami.pdf) (PAMI 2007)
* **[Voxel Grid Pooling](#voxelgrid)** from, *e.g.*, Simonovsky and Komodakis: [Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs](https://arxiv.org/abs/1704.02901) (CVPR 2017)
* **[Iterative Farthest Point Sampling](#farthestpointsampling)** from, *e.g.* Qi *et al.*: [PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space](https://arxiv.org/abs/1706.02413) (NIPS 2017)
* **[k-NN](#knn-graph)** and **[Radius](#radius-graph)** graph generation
* Clustering based on **[Nearest](#nearest)** points
* **[Random Walk Sampling](#randomwalk-sampling)** from, *e.g.*, Grover and Leskovec: [node2vec: Scalable Feature Learning for Networks](https://arxiv.org/abs/1607.00653) (KDD 2016)
All included operations work on varying data types and are implemented both for CPU and GPU.
## Installation
### Anaconda
**Update:** You can now install `pytorch-cluster` via [Anaconda](https://anaconda.org/pyg/pytorch-cluster) for all major OS/PyTorch/CUDA combinations 🤗
Given that you have [`pytorch >= 1.8.0` installed](https://pytorch.org/get-started/locally/), simply run
```
conda install pytorch-cluster -c pyg
```
### Binaries
We alternatively provide pip wheels for all major OS/PyTorch/CUDA combinations, see [here](https://data.pyg.org/whl).
#### PyTorch 1.11
To install the binaries for PyTorch 1.11.0, simply run
```
pip install torch-cluster -f https://data.pyg.org/whl/torch-1.11.0+${CUDA}.html
```
where `${CUDA}` should be replaced by either `cpu`, `cu102`, `cu113`, or `cu115` depending on your PyTorch installation.
| | `cpu` | `cu102` | `cu113` | `cu115` |
|-------------|-------|---------|---------|---------|
| **Linux** | ✅ | ✅ | ✅ | ✅ |
| **Windows** | ✅ | | ✅ | ✅ |
| **macOS** | ✅ | | | |
#### PyTorch 1.10
To install the binaries for PyTorch 1.10.0, PyTorch 1.10.1 and PyTorch 1.10.2, simply run
```
pip install torch-cluster -f https://data.pyg.org/whl/torch-1.10.0+${CUDA}.html
```
where `${CUDA}` should be replaced by either `cpu`, `cu102`, `cu111`, or `cu113` depending on your PyTorch installation.
| | `cpu` | `cu102` | `cu111` | `cu113` |
|-------------|-------|---------|---------|---------|
| **Linux** | ✅ | ✅ | ✅ | ✅ |
| **Windows** | ✅ | ✅ | ✅ | ✅ |
| **macOS** | ✅ | | | |
**Note:** Binaries of older versions are also provided for PyTorch 1.4.0, PyTorch 1.5.0, PyTorch 1.6.0, PyTorch 1.7.0/1.7.1, PyTorch 1.8.0/1.8.1 and PyTorch 1.9.0 (following the same procedure).
For older versions, you might need to explicitly specify the latest supported version number in order to prevent a manual installation from source.
You can look up the latest supported version number [here](https://data.pyg.org/whl).
### From source
Ensure that at least PyTorch 1.4.0 is installed and verify that `cuda/bin` and `cuda/include` are in your `$PATH` and `$CPATH` respectively, *e.g.*:
```
$ python -c "import torch; print(torch.__version__)"
>>> 1.4.0
$ python -c "import torch; print(torch.__version__)"
>>> 1.1.0
$ echo $PATH
>>> /usr/local/cuda/bin:...
$ echo $CPATH
>>> /usr/local/cuda/include:...
```
Then run:
```
pip install torch-cluster
```
When running in a docker container without NVIDIA driver, PyTorch needs to evaluate the compute capabilities and may fail.
In this case, ensure that the compute capabilities are set via `TORCH_CUDA_ARCH_LIST`, *e.g.*:
```
export TORCH_CUDA_ARCH_LIST = "6.0 6.1 7.2+PTX 7.5+PTX"
```
## Functions
### Graclus
A greedy clustering algorithm of picking an unmarked vertex and matching it with one its unmarked neighbors (that maximizes its edge weight).
The GPU algorithm is adapted from Fagginger Auer and Bisseling: [A GPU Algorithm for Greedy Graph Matching](http://www.staff.science.uu.nl/~bisse101/Articles/match12.pdf) (LNCS 2012)
```python
import torch
from torch_cluster import graclus_cluster
row = torch.tensor([0, 1, 1, 2])
col = torch.tensor([1, 0, 2, 1])
weight = torch.tensor([1., 1., 1., 1.]) # Optional edge weights.
cluster = graclus_cluster(row, col, weight)
```
```
print(cluster)
tensor([0, 0, 1])
```
### VoxelGrid
A clustering algorithm, which overlays a regular grid of user-defined size over a point cloud and clusters all points within a voxel.
```python
import torch
from torch_cluster import grid_cluster
pos = torch.tensor([[0., 0.], [11., 9.], [2., 8.], [2., 2.], [8., 3.]])
size = torch.Tensor([5, 5])
cluster = grid_cluster(pos, size)
```
```
print(cluster)
tensor([0, 5, 3, 0, 1])
```
### FarthestPointSampling
A sampling algorithm, which iteratively samples the most distant point with regard to the rest points.
```python
import torch
from torch_cluster import fps
x = torch.tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.]])
batch = torch.tensor([0, 0, 0, 0])
index = fps(x, batch, ratio=0.5, random_start=False)
```
```
print(index)
tensor([0, 3])
```
### kNN-Graph
Computes graph edges to the nearest *k* points.
**Args:**
* **x** *(Tensor)*: Node feature matrix of shape `[N, F]`.
* **k** *(int)*: The number of neighbors.
* **batch** *(LongTensor, optional)*: Batch vector of shape `[N]`, which assigns each node to a specific example. `batch` needs to be sorted. (default: `None`)
* **loop** *(bool, optional)*: If `True`, the graph will contain self-loops. (default: `False`)
* **flow** *(string, optional)*: The flow direction when using in combination with message passing (`"source_to_target"` or `"target_to_source"`). (default: `"source_to_target"`)
* **cosine** *(boolean, optional)*: If `True`, will use the Cosine distance instead of Euclidean distance to find nearest neighbors. (default: `False`)
* **num_workers** *(int)*: Number of workers to use for computation. Has no effect in case `batch` is not `None`, or the input lies on the GPU. (default: `1`)
```python
import torch
from torch_cluster import knn_graph
x = torch.tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.]])
batch = torch.tensor([0, 0, 0, 0])
edge_index = knn_graph(x, k=2, batch=batch, loop=False)
```
```
print(edge_index)
tensor([[1, 2, 0, 3, 0, 3, 1, 2],
[0, 0, 1, 1, 2, 2, 3, 3]])
```
### Radius-Graph
Computes graph edges to all points within a given distance.
**Args:**
* **x** *(Tensor)*: Node feature matrix of shape `[N, F]`.
* **r** *(float)*: The radius.
* **batch** *(LongTensor, optional)*: Batch vector of shape `[N]`, which assigns each node to a specific example. `batch` needs to be sorted. (default: `None`)
* **loop** *(bool, optional)*: If `True`, the graph will contain self-loops. (default: `False`)
* **max_num_neighbors** *(int, optional)*: The maximum number of neighbors to return for each element. If the number of actual neighbors is greater than `max_num_neighbors`, returned neighbors are picked randomly. (default: `32`)
* **flow** *(string, optional)*: The flow direction when using in combination with message passing (`"source_to_target"` or `"target_to_source"`). (default: `"source_to_target"`)
* **num_workers** *(int)*: Number of workers to use for computation. Has no effect in case `batch` is not `None`, or the input lies on the GPU. (default: `1`)
```python
import torch
from torch_cluster import radius_graph
x = torch.tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.]])
batch = torch.tensor([0, 0, 0, 0])
edge_index = radius_graph(x, r=2.5, batch=batch, loop=False)
```
```
print(edge_index)
tensor([[1, 2, 0, 3, 0, 3, 1, 2],
[0, 0, 1, 1, 2, 2, 3, 3]])
```
### Nearest
Clusters points in *x* together which are nearest to a given query point in *y*.
`batch_{x,y}` vectors need to be sorted.
```python
import torch
from torch_cluster import nearest
x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]])
batch_x = torch.tensor([0, 0, 0, 0])
y = torch.Tensor([[-1, 0], [1, 0]])
batch_y = torch.tensor([0, 0])
cluster = nearest(x, y, batch_x, batch_y)
```
```
print(cluster)
tensor([0, 0, 1, 1])
```
### RandomWalk-Sampling
Samples random walks of length `walk_length` from all node indices in `start` in the graph given by `(row, col)`.
```python
import torch
from torch_cluster import random_walk
row = torch.tensor([0, 1, 1, 1, 2, 2, 3, 3, 4, 4])
col = torch.tensor([1, 0, 2, 3, 1, 4, 1, 4, 2, 3])
start = torch.tensor([0, 1, 2, 3, 4])
walk = random_walk(row, col, start, walk_length=3)
```
```
print(walk)
tensor([[0, 1, 2, 4],
[1, 3, 4, 2],
[2, 4, 2, 1],
[3, 4, 2, 4],
[4, 3, 1, 0]])
```
## Running tests
```
pytest
```
## C++ API
`torch-cluster` also offers a C++ API that contains C++ equivalent of python models.
```
mkdir build
cd build
# Add -DWITH_CUDA=on support for the CUDA if needed
cmake ..
make
make install
```
# TorchClusterConfig.cmake
# --------------------
#
# Exported targets:: Cluster
#
@PACKAGE_INIT@
set(PN TorchCluster)
set(${PN}_INCLUDE_DIR "${PACKAGE_PREFIX_DIR}/@CMAKE_INSTALL_INCLUDEDIR@")
set(${PN}_LIBRARY "")
set(${PN}_DEFINITIONS USING_${PN})
check_required_components(${PN})
if(NOT (CMAKE_VERSION VERSION_LESS 3.0))
#-----------------------------------------------------------------------------
# Don't include targets if this file is being picked up by another
# project which has already built this as a subproject
#-----------------------------------------------------------------------------
if(NOT TARGET ${PN}::TorchCluster)
include("${CMAKE_CURRENT_LIST_DIR}/${PN}Targets.cmake")
if(NOT TARGET torch_library)
find_package(Torch REQUIRED)
endif()
if(NOT TARGET Python3::Python)
find_package(Python3 COMPONENTS Development)
endif()
target_link_libraries(TorchCluster::TorchCluster INTERFACE ${TORCH_LIBRARIES} Python3::Python)
if(@WITH_CUDA@)
target_compile_definitions(TorchCluster::TorchCluster INTERFACE WITH_CUDA)
endif()
endif()
endif()
```
./build_conda.sh 3.9 1.11.0 cu113 # python, pytorch and cuda version
```
#!/bin/bash
export PYTHON_VERSION=$1
export TORCH_VERSION=$2
export CUDA_VERSION=$3
export CONDA_PYTORCH_CONSTRAINT="pytorch==${TORCH_VERSION%.*}.*"
if [ "${CUDA_VERSION}" = "cpu" ]; then
export CONDA_CUDATOOLKIT_CONSTRAINT="cpuonly # [not osx]"
else
case $CUDA_VERSION in
cu115)
export CONDA_CUDATOOLKIT_CONSTRAINT="cudatoolkit==11.5.*"
;;
cu113)
export CONDA_CUDATOOLKIT_CONSTRAINT="cudatoolkit==11.3.*"
;;
cu111)
export CONDA_CUDATOOLKIT_CONSTRAINT="cudatoolkit==11.1.*"
;;
cu102)
export CONDA_CUDATOOLKIT_CONSTRAINT="cudatoolkit==10.2.*"
;;
cu101)
export CONDA_CUDATOOLKIT_CONSTRAINT="cudatoolkit==10.1.*"
;;
*)
echo "Unrecognized CUDA_VERSION=$CUDA_VERSION"
exit 1
;;
esac
fi
echo "PyTorch $TORCH_VERSION+$CUDA_VERSION"
echo "- $CONDA_PYTORCH_CONSTRAINT"
echo "- $CONDA_CUDATOOLKIT_CONSTRAINT"
conda build . -c pytorch -c default -c nvidia --output-folder "$HOME/conda-bld"
package:
name: pytorch-cluster
version: 1.6.0
source:
path: ../..
requirements:
build:
- {{ compiler('c') }} # [win]
host:
- pip
- python {{ environ.get('PYTHON_VERSION') }}
- {{ environ.get('CONDA_PYTORCH_CONSTRAINT') }}
- {{ environ.get('CONDA_CUDATOOLKIT_CONSTRAINT') }}
run:
- python {{ environ.get('PYTHON_VERSION') }}
- {{ environ.get('CONDA_PYTORCH_CONSTRAINT') }}
- {{ environ.get('CONDA_CUDATOOLKIT_CONSTRAINT') }}
build:
string: py{{ environ.get('PYTHON_VERSION').replace('.', '') }}_torch_{{ environ['TORCH_VERSION'] }}_{{ environ['CUDA_VERSION'] }}
script: pip install .
script_env:
- FORCE_CUDA
- TORCH_CUDA_ARCH_LIST
test:
imports:
- torch_cluster
requires:
- scipy
about:
home: https://github.com/rusty1s/pytorch_cluster
license: MIT
summary: PyTorch Extension Library of Optimized Graph Cluster Algorithms
#include "hip/hip_runtime.h"
#include "fps_hip.h"
#include "fps_cuda.h"
#include <ATen/hip/HIPContext.h>
#include <ATen/cuda/CUDAContext.h>
#include "utils.cuh"
......@@ -72,7 +71,7 @@ torch::Tensor fps_cuda(torch::Tensor src, torch::Tensor ptr,
CHECK_CUDA(ptr);
CHECK_CUDA(ratio);
CHECK_INPUT(ptr.dim() == 1);
hipSetDevice(src.get_device());
cudaSetDevice(src.get_device());
src = src.view({src.size(0), -1}).contiguous();
ptr = ptr.contiguous();
......@@ -94,8 +93,8 @@ torch::Tensor fps_cuda(torch::Tensor src, torch::Tensor ptr,
auto dist = torch::full(src.size(0), 5e4, src.options());
auto out_size = (int64_t *)malloc(sizeof(int64_t));
hipMemcpy(out_size, out_ptr[-1].data_ptr<int64_t>(), sizeof(int64_t),
hipMemcpyDeviceToHost);
cudaMemcpy(out_size, out_ptr[-1].data_ptr<int64_t>(), sizeof(int64_t),
cudaMemcpyDeviceToHost);
auto out = torch::empty(out_size[0], out_ptr.options());
auto stream = at::cuda::getCurrentCUDAStream();
......
#include "hip/hip_runtime.h"
#include "graclus_hip.h"
#include "graclus_cuda.h"
#include <ATen/hip/HIPContext.h>
#include <ATen/cuda/CUDAContext.h>
#include "utils.cuh"
......@@ -34,8 +33,8 @@ bool colorize(torch::Tensor out) {
out.data_ptr<int64_t>(), bernoulli.data_ptr<float>(), numel);
bool done_h;
hipMemcpyFromSymbol(&done_h, HIP_SYMBOL(done_d), sizeof(done_h), 0,
hipMemcpyDeviceToHost);
cudaMemcpyFromSymbol(&done_h, done_d, sizeof(done_h), 0,
cudaMemcpyDeviceToHost);
return done_h;
}
......@@ -224,7 +223,7 @@ torch::Tensor graclus_cuda(torch::Tensor rowptr, torch::Tensor col,
CHECK_INPUT(optional_weight.value().dim() == 1);
CHECK_INPUT(optional_weight.value().numel() == col.numel());
}
hipSetDevice(rowptr.get_device());
cudaSetDevice(rowptr.get_device());
int64_t num_nodes = rowptr.numel() - 1;
auto out = torch::full(num_nodes, -1, rowptr.options());
......
#include "hip/hip_runtime.h"
#include "grid_hip.h"
#include "grid_cuda.h"
#include <ATen/hip/HIPContext.h>
#include <ATen/cuda/CUDAContext.h>
#include "utils.cuh"
......@@ -30,7 +29,7 @@ torch::Tensor grid_cuda(torch::Tensor pos, torch::Tensor size,
torch::optional<torch::Tensor> optional_end) {
CHECK_CUDA(pos);
CHECK_CUDA(size);
hipSetDevice(pos.get_device());
cudaSetDevice(pos.get_device());
if (optional_start.has_value())
CHECK_CUDA(optional_start.value());
......
#include "hip/hip_runtime.h"
#include "radius_hip.h"
#include "radius_cuda.h"
#include <ATen/hip/HIPContext.h>
#include <ATen/cuda/CUDAContext.h>
#include "utils.cuh"
......@@ -114,7 +113,7 @@ torch::Tensor knn_cuda(const torch::Tensor x, const torch::Tensor y,
CHECK_INPUT(ptr_x.value().numel() == ptr_y.value().numel());
hipSetDevice(x.get_device());
cudaSetDevice(x.get_device());
auto row = torch::empty(y.size(0) * k, ptr_y.value().options());
auto col = torch::full(y.size(0) * k, -1, ptr_y.value().options());
......
#include "hip/hip_runtime.h"
#include "nearest_hip.h"
#include "nearest_cuda.h"
#include <ATen/hip/HIPContext.h>
#include <ATen/cuda/CUDAContext.h>
#include "utils.cuh"
......@@ -72,7 +71,7 @@ torch::Tensor nearest_cuda(torch::Tensor x, torch::Tensor y,
CHECK_CUDA(y);
CHECK_CUDA(ptr_x);
CHECK_CUDA(ptr_y);
hipSetDevice(x.get_device());
cudaSetDevice(x.get_device());
x = x.view({x.size(0), -1}).contiguous();
y = y.view({y.size(0), -1}).contiguous();
......
#include "hip/hip_runtime.h"
#include "radius_hip.h"
#include "radius_cuda.h"
#include <ATen/hip/HIPContext.h>
#include <ATen/cuda/CUDAContext.h>
#include "utils.cuh"
......@@ -53,7 +52,7 @@ torch::Tensor radius_cuda(const torch::Tensor x, const torch::Tensor y,
CHECK_INPUT(y.dim() == 2);
CHECK_INPUT(x.size(1) == y.size(1));
hipSetDevice(x.get_device());
cudaSetDevice(x.get_device());
if (ptr_x.has_value()) {
CHECK_CUDA(ptr_x.value());
......@@ -71,7 +70,7 @@ torch::Tensor radius_cuda(const torch::Tensor x, const torch::Tensor y,
CHECK_INPUT(ptr_x.value().numel() == ptr_y.value().numel());
hipSetDevice(x.get_device());
cudaSetDevice(x.get_device());
auto row =
torch::full(y.size(0) * max_num_neighbors, -1, ptr_y.value().options());
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment