1. 20 Jul, 2025 1 commit
  2. 16 Jul, 2025 1 commit
    • Lei Wang's avatar
      [Warp Specialize] Implicit Warp Specialize Programing Model (#605) · e2d25ba8
      Lei Wang authored
      * [Enhancement] Improve memory access condition checks in GlobalMemChecker
      
      - Updated the condition checks in the GlobalMemChecker to utilize symbolic bounds in the CanProve method, enhancing the accuracy of memory access validations.
      - This change ensures that both upper and lower bound conditions are evaluated with improved proof strength, contributing to more robust memory access analysis.
      
      * lintfix
      
      * [Enhancement] Add legality checks for shared memory and global range in LowerBulkCopy
      
      - Implemented checks to ensure that the shared memory range and global range are legal during the bulk copy operation.
      - Added assertions to validate that the extents of global and shared ranges match, improving the robustness of memory access validation in the LowerBulkCopy function.
      
      * [Refactor] Update barrier and clear operations in warp specialization examples
      
      - Replaced `mbarrier_wait_parity` and `mbarrier_arrive` with `barrier_wait` and `barrier_arrive` for improved clarity and consistency in synchronization.
      - Adjusted the order of `clear` operations for local fragments in `example_warp_specialize_gemm_copy_1_gemm_0` to enhance parallel execution efficiency.
      
      * [Enhancement] Implement thread partial synchronization and improve shared memory allocation handling
      
      - Added support for thread partial barrier synchronization in CUDA, allowing for more flexible thread management.
      - Enhanced the `MergeSharedMemoryAllocations` function to accept alignment bytes, improving memory allocation efficiency based on target requirements.
      - Updated the `Lower` methods in `Copy` and `Fill` classes to include conditional predicates for thread execution, ensuring better control over thread behavior.
      - Refactored the `print` function to include warp group and warp IDs for more detailed debugging output.
      - Improved the handling of dynamic shared memory allocations in the `LowerAndLegalize` function to align with target-specific requirements.
      
      * [Enhancement] Add support for disabling TMA in Copy operations
      
      - Introduced a new `disable_tma` parameter in the `Copy` class to control thread memory access behavior.
      - Updated the `Lower` method to conditionally execute bulk copy operations based on the `disable_tma` flag.
      - Enhanced the `copy` function to accept the `disable_tma` argument, allowing for more flexible memory copy operations.
      - Improved handling of `coalesced_width` to ensure it defaults to -1 when not provided, enhancing robustness in memory operations.
      
      * [Refactor] Clean up whitespace and formatting in multiple files
      
      - Removed unnecessary blank lines and adjusted line breaks for improved code readability in `example_mla_decode.py`, `example_warp_specialize_gemm_copy_gemm_0_1.py`, `phase.py`, and `copy.py`.
      - Ensured consistent formatting across functions to enhance maintainability and clarity of the codebase.
      
      * [Enhancement] Refactor flash attention implementation for improved performance and configurability
      
      - Split the shared memory allocations for query and key-value pairs to optimize memory usage.
      - Introduced command-line arguments for batch size, number of heads, and dimensions, enhancing flexibility in running the example.
      - Updated kernel execution parameters to improve thread management and synchronization.
      - Enhanced the overall structure of the flash attention function for better readability and maintainability.
      
      * fix
      
      * Update layout inference in ParallelOp to account for thread bounds; remove debug print in OptimizeForTarget
      
      * Refactor barrier handling and update example configurations
      
      - Replaced commented-out barrier creation with new barrier allocation in GEMM example.
      - Updated kernel configuration in warp specialization example to include async copy settings.
      - Enhanced barrier management in the phase optimization process to improve synchronization handling.
      - Introduced new barrier allocation function for better memory management in shared contexts.
      
      * Refactor barrier handling in LowerAndLegalize and OptimizeForTarget
      
      - Reintroduced barrier lowering in OptimizeForTarget to enhance synchronization.
      - Removed commented-out barrier lowering in LowerAndLegalize for cleaner code.
      - Added exit() call in OptimizeForTarget to halt execution after barrier lowering.
      
      * Enhance CMake configuration and clean up example scripts
      
      - Enabled compile command export in CMakeLists.txt for better build integration.
      - Removed unnecessary print statement in the warp specialization example.
      - Cleaned up commented-out code in GEMM example for improved readability.
      - Updated barrier handling in shared memory allocation transformations for better synchronization.
      
      * Refactor barrier handling in warp specialization examples
      
      - Replaced commented-out mbarrier code with new barrier allocation using T.alloc_barrier for improved synchronization.
      - Updated barrier wait and arrive calls to align with the new allocation method across multiple example scripts.
      - Enhanced code readability by removing unnecessary comments and ensuring consistent barrier management.
      
      * Update lower_shared_barrier.cc
      
      * Update phase.py
      
      * Update warp specialization example and Cython wrapper
      
      - Removed commented-out pass configuration options in the warp specialization example for clarity.
      - Added functionality to write the generated kernel source to a file named "kernel.cu".
      - Enhanced Cython wrapper to support boolean type conversion for improved type handling.
      
      * Add storage synchronization call in shared barrier transformation
      
      - Introduced a new evaluation statement to call the TVM storage sync function with "shared" as an argument, enhancing synchronization in the shared barrier handling process.
      
      * remove debug files
      
      * Remove kernel source output to file in warp specialization example
      
      * remove comments
      
      * Refactor tensor handling and update test execution in TileLang
      
      - Changed `Buffer` to `Tensor` in `customize.py` for better type consistency.
      - Updated `mbarrier_wait_parity` and `mbarrier_arrive` functions in `builtin.py` to use `tir.BufferLoad` instead of `BufferLoad`.
      - Commented out the main testing function in `test_tilelang_language_reshape.py` and replaced it with a direct call to `run_reshape_smem` for streamlined testing.
      - Removed unnecessary NVCC compiler flags in `libgen.py` to reduce verbosity.
      
      * Update test_tilelang_language_reshape.py
      e2d25ba8
  3. 15 Jul, 2025 1 commit
    • Lei Wang's avatar
      [Pass][Simplify] Introduce symbolic level simplify for condition expression (#634) · 02a0cf59
      Lei Wang authored
      * [Enhancement] Add argument simplification option to StmtSimplifier
      
      - Introduced a new `simplify_arguments` flag in the `StmtSimplifier::Apply` method to control argument simplification behavior.
      - Updated the `Simplify` function to accept the new flag, allowing for enhanced flexibility in the simplification process.
      - Adjusted the `LowerAndLegalize` and `_Simplify` functions to utilize the new argument, ensuring consistent behavior across the codebase.
      - Added comments to clarify the purpose of the new flag and its impact on simplification logic.
      
      * lint fix
      
      * [Enhancement] Improve layout inference and reduce operation handling
      
      - Updated `ParallelOp::InferLayout` to check for pure buffer stores, enhancing layout inference logic.
      - Modified `ReduceOp::Lower` to include all threads in the AllReduce operation, improving performance on specific architectures.
      - Added a TODO comment in `AllReduce` to consider merging synchronization barriers for optimization.
      
      * lint fix
      
      * [Enhancement] Add input validation for GEMM parameters
      
      - Introduced checks to ensure that the dimensions M and N are divisible by their respective warp sizes (kMPerWarp and kNPerWarp) in the Gemm::ComputeWarpPartition method.
      - Added informative error messages to assist in debugging when the input parameters do not meet the required conditions.
      
      * bug fix
      02a0cf59
  4. 03 Jul, 2025 1 commit
    • botbw's avatar
      [Experimental][Language] add `T.GEMM_SP` for sm90 sparse tensor core (#526) · be44758c
      botbw authored
      
      
      * [experimental] add a draft gemm_sp
      
      * [3rdparty] bump cutlass to v3.9.3
      
      * [lint] run format.sh
      
      * [chore] rebase
      
      * [chore] use abs path
      
      * [gemm_sp] add metadata layout
      
      * [ci] add more example
      
      * [lint] run format.sh
      
      * [chore] polish
      
      * [chore] move gemm_sp to experimental
      
      * [chore] polish
      
      * [lint] run format.sh
      
      * [Enhancement] Improve bulk copy handling and update GEMM sparse tensor test
      
      * Added a warning log for unsupported non-swizzled global layouts in the bulk copy operation, ensuring fallback to normal copy.
      * Refactored the GEMM sparse tensor test by removing unnecessary imports and simplifying the kernel compilation process.
      * Updated the test to directly call the `run_gemm_sp` function, enhancing clarity and functionality.
      
      * Implement Test
      
      * [Enhancement] Update GEMM SP and SM89 templates for improved functionality
      
      * Refactored GEMM SP computation to enhance warp partitioning logic, ensuring compatibility with Hopper architecture.
      * Updated layout inference to support new WGMMA conditions and improved error messaging for unsupported targets.
      * Modified SM89 templates to utilize new MMA atom structures, enhancing performance and compatibility with fp8 types.
      * Added conditional inclusion for GEMM SP header based on CUDA architecture version.
      
      * lint fix
      
      * [gemm_sp] support more layout and data types
      
      * Enhancement: sync T.gemm_sp's layout inference with T.gemm
      
      * Enhancement: support more block_k in compress util
      
      * [Enhancement] enable block_k=64
      
      * [Lint] run format.sh
      
      * [Enhancement] compressor support more dtype
      
      * Enhancement: enable block_K=32
      
      * [Lint] format.sh
      
      * [Fixbug] fix shape
      
      * Refactor: sync gemm
      
      * [Enhancement] enable transpose
      
      * [Enhancement] enable fp8_e4m3
      
      * [Enhancement] enable int8
      
      * [Lint] run format.sh
      
      * [Benchmark] add gemm_sp benchmark
      
      * [Example] fix 256 threads hang
      
      * [CI] fix ci
      
      * [Chore] resolve gemini feedback
      
      * [Benchmark] increase search space
      
      * [Lint] format
      
      * [CI] skip sparse tensor core related tests as only sm90 is supported
      
      * [CI] pass local run
      
      * Update gemm_sm89.h
      
      * lint fix
      
      * lint fix
      
      * [Enhancement] Add support for sparse GEMM and initialize CUDA architecture flags
      
      - Introduced a new boolean flag `enable_sparse_gemm_` to control the inclusion of sparse GEMM functionality in CUDA code generation.
      - Updated the `Finish` method to conditionally include the sparse GEMM header based on the new flag.
      - Implemented logic in `VisitStmt_` to enable sparse GEMM when the corresponding external call is detected.
      - Added a function to initialize the `TORCH_CUDA_ARCH_LIST` environment variable based on the target compute version, enhancing compatibility with PyTorch.
      - Refactored the initialization function into the appropriate module and ensured it is called in the sparse utilities module.
      
      * Update test_compress_utils.py
      
      ---------
      Co-authored-by: default avatarLeiWang1999 <leiwang1999@outlook.com>
      Co-authored-by: default avatarLei Wang <34334180+LeiWang1999@users.noreply.github.com>
      be44758c
  5. 27 Jun, 2025 2 commits
  6. 16 Jun, 2025 1 commit
    • Lei Wang's avatar
      [Refactor] Phaseout tf32 Casting from GEMM Templates (#573) · 9ba8b480
      Lei Wang authored
      * [Feature] Add Quarter Bank Swizzle Layout and Update GEMM Layout Logic
      
      - Introduced a new `makeQuarterBankSwizzleLayout` function for layout swizzling of 32 bytes.
      - Updated `makeGemmABLayout` to include an `enable_padding` parameter, allowing for conditional layout selection between padded and quarter bank swizzle layouts.
      - Adjusted layout inference in GEMM operations to utilize the new quarter bank swizzle layout when appropriate.
      - Enhanced bulk copy operations to recognize and handle the new layout type, improving memory access patterns.
      
      * lint fix
      
      * [Refactor] Update GEMM Layout Functions and Inference Logic
      
      - Removed the `enable_padding` parameter from `makeGemmABLayout` to simplify its signature.
      - Introduced `makeGemmABLayoutHopper` for enhanced layout handling specific to Hopper architecture.
      - Updated layout inference in GEMM operations to utilize the new `makeGemmABLayoutHopper` function, improving clarity and maintainability in layout selection.
      - Adjusted related layout functions to ensure consistent behavior across different architectures.
      
      * [Refactor] Remove tf32 Casting Logic from GEMM Templates
      
      - Eliminated the `cast_float_to_tf32` function from `gemm_sm80`, `gemm_sm89`, and `gemm_sm90` templates to streamline the code.
      - Removed conditional casting logic for float32 to tfloat32 conversion, enhancing clarity and maintainability.
      - Updated relevant sections in GEMM operations to reflect the removal of casting, ensuring consistent behavior across templates.
      - Adjusted tensor view handling to improve performance and accuracy in matrix operations.
      
      * Update bulk_copy.cc
      
      * Fix profiler initialization in GEMM test by removing TensorSupplyType argument for improved flexibility.
      9ba8b480
  7. 07 Jun, 2025 1 commit
    • Lei Wang's avatar
      [Bugfix] Add tf32 casting to GEMM templates (#556) · 8cc8db52
      Lei Wang authored
      * Add tf32 casting functionality to GEMM templates
      
      - Introduced a `cast_float_to_tf32` function to convert float32 values to tfloat32 format across gemm_sm80, gemm_sm89, and gemm_sm90 templates.
      - Implemented conditional casting in relevant sections of the GEMM operations to ensure compatibility with tfloat32 types.
      - Enhanced the handling of tensor views to support the new casting logic, improving performance and accuracy in matrix operations.
      
      * lint fix
      
      * Refactor tfloat32 casting logic in GEMM templates
      
      - Replaced the `is_tfloat32` boolean with `need_tfloat32_cast` to improve clarity and accuracy in determining when to cast float32 to tfloat32.
      - Updated relevant sections in `gemm_sm80`, `gemm_sm89`, and `gemm_sm90` to utilize the new casting logic, enhancing compatibility with tfloat32 types.
      - Ensured consistent application of casting across tensor views, improving performance and correctness in matrix operations.
      
      * Refactor GEMM template functions for improved readability
      
      - Simplified the function signature of `body_rs` in both `gemm_sm80` and `gemm_sm90` templates for better clarity.
      - Adjusted the casting logic in `gemm_sm90` to ensure consistent application of `cast_float_to_tf32` across tensor views, enhancing performance and maintainability.
      
      * Enhance tf32 casting logic in GEMM templates
      
      - Updated the `cast_float_to_tf32` function in `gemm_sm80`, `gemm_sm89`, and `gemm_sm90` to conditionally apply the casting only if the input is finite, improving robustness.
      - Simplified the `need_tfloat32_cast` logic to clarify the conditions under which tfloat32 casting is required, enhancing code readability and maintainability.
      
      * Refactor GEMM template functions and layout inference logic
      
      - Removed the `cast_float_to_tf32` function from `gemm_sm90` and updated the `body_sr` function to streamline the casting process for tensor views, enhancing code clarity and maintainability.
      - Improved layout inference in `layout_inference.cc` by adding checks for the layout map's definition, ensuring robustness in handling layout annotations.
      - Simplified the handling of layout maps in the `annotate_layout` function, allowing for more flexible layout definitions and error handling.
      8cc8db52
  8. 05 Jun, 2025 1 commit
    • Gabriel Wu's avatar
      [Enhancement] Add nvrtc execution backend (#461) · 17f7394f
      Gabriel Wu authored
      
      
      * [wip] feat: add nvrtc backend
      
      * [wip] fix: handle out_idx
      
      * [wip] refactor: move lib logic to libgen
      
      * feat: cache for nvrtc backend
      
      * fmt: run format
      
      * fix: handle cuda bindings import error
      
      * fix: handle cuda bindings import error
      
      * fix: handle cuda bindings import error
      
      * fix: handle cuda bindings import error
      
      * fix: get kernel source
      
      * refactor: speedup pyimport
      
      * Improve error handling for missing cuda-python dependency in nvrtc backend. Raise ImportError with detailed installation instructions instead of logging a warning.
      
      * Enhance nvrtc backend error handling by introducing a flag to check for cuda-python availability. Raise ImportError with detailed installation instructions during initialization if the nvrtc backend is unavailable, improving user experience and clarity.
      
      * Update README.md to include recent NVRTC Backend addition, highlighting reduced compilation time for CUDA templates.
      
      * fix tl_templates
      
      * ensure CUDA context
      
      ---------
      Co-authored-by: default avatarLeiWang1999 <leiwang1999@outlook.com>
      17f7394f
  9. 04 Jun, 2025 1 commit
    • Lei Wang's avatar
      [AMD][Enhancement] Add support for Vectorized FP8 DataPacking (#542) · 319bc6b1
      Lei Wang authored
      * [Enhancement] Add support for new FP8 types in HIP code generation
      
      * Updated `PrintConst` function in `codegen_hip.cc` to handle `float8_e4m3fnuz` type.
      * Introduced new functions in `hip_fp8.h` for creating FP8 types, including `make_fp8_e4_4_t` and `make_fp8_e4_8_t`, enhancing type handling for FP8 data structures.
      * Improved overall compatibility and performance for FP8 data types in HIP.
      
      * workaround for competition
      
      * enhance autotune
      
      * autotune cache fix
      
      * Implement validation for unused keys in AutoTuner configuration
      
      * Added a check in the AutoTuner class to raise a ValueError if there are unused keys in the configuration, enhancing error handling and ensuring configuration integrity.
      
      * lint fix
      
      * revert changes of threads
      
      * Update pipelining in `example_mla_decode.py` to improve performance
      
      * Changed the number of stages in the pipelined loop from 0 to 2, enhancing the efficiency of the attention mechanism in the decoding process.
      
      * Enhance Cython kernel validation by adding tensor attribute checks
      
      * Updated the `CythonKernelWrapper` to include dedicated methods for validating tensor device, dtype, and static shape.
      * Modified the `forward` method to utilize these new validation methods, improving error handling and ensuring input integrity.
      * Updated the `lambda_forward` function in `CythonKernelAdapter` to reflect changes in validation parameters.
      319bc6b1
  10. 01 Jun, 2025 1 commit
    • Lei Wang's avatar
      [AMD] Support float8 matrix core (#537) · 5872e647
      Lei Wang authored
      
      
      * [Enhancement] Add support for FP8 types in CUDA and HIP code generation
      
      * Updated `GetFP8Type` function in `codegen_cuda.cc` and `codegen_hip.cc` to handle new FP8 types, including `kFloat8_e4m3fnuz`.
      * Introduced a new header file `hip_fp8.h` for FP8 type definitions in HIP.
      * Modified type mappings in `dlpack.py` and `mfma_macro_generator.py` to accommodate new FP8 types.
      * Enhanced type handling in `TLHIPSourceWrapper` and `tensor.py` for better integration with FP8 types.
      * Added necessary includes and logic to support FP8 in the code generation process, improving performance and compatibility with FP8 data types.
      
      * lint fix
      
      * Update src/target/codegen_hip.cc
      Co-authored-by: default avatargemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
      
      * Update tilelang/intrinsics/mfma_macro_generator.py
      Co-authored-by: default avatargemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
      
      * workaround
      
      * fix
      
      * Update submodule TVM to latest commit 587028ffebfff0ded520f8f90d62f0f6b165906c
      
      * bug fix
      
      * Refactor tilelang matrix multiplication to support transposition and packing options. Adjusted shared memory shapes and loading logic for A and B matrices. Updated test cases to validate new functionality.
      
      * Refactor assertion function for tilelang matrix multiplication to improve readability by formatting parameters and aligning code. Cleaned up whitespace in intrinsic layout functions for consistency.
      
      * Update bfloat16 type definitions in common.h and gemm.h for consistency. Changed __hip_bfloat16 to hip_bfloat16 and updated MfmaTraits specialization accordingly.
      
      * lint fix
      
      ---------
      Co-authored-by: default avatargemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
      5872e647
  11. 26 May, 2025 2 commits
    • Lei Wang's avatar
      [Enhancement] Add atomicAdd for FLOAT16x2 and FLOAT16x4 (#522) · 46798f25
      Lei Wang authored
      * [Enhancement] Add atomic addition functions for FLOAT16x2 and FLOAT16x4 in CUDA
      
      * Introduced `AtomicAddx2` and `AtomicAddx4` functions for performing atomic addition operations on double-width float types in CUDA.
      * Updated `customize.py` to include the new `atomic_addx4` function for external calls.
      * Modified `__init__.py` to export the new atomic addition function, ensuring accessibility in the module.
      
      * lint fix
      46798f25
    • Lei Wang's avatar
      [Refactor] Replace default fp8 dtype with cute to perform fast cast (#520) · 6addc509
      Lei Wang authored
      * [Refactor] Enhance GEMM Warp Partitioning Logic and Introduce Buffer Remapping (#516)
      
      * Improved the warp partitioning logic in `Gemm::ComputeWarpPartition` to better accommodate various GEMM policies, including FullRow, FullCol, and Square, ensuring optimal performance based on matrix dimensions.
      * Introduced a new `RemapBufferRewriter` class to handle buffer reference updates and padding annotations during statement transformations, enhancing memory access safety and clarity.
      * Updated the `OptimizeForTarget` function to include a new step for configuring index bitwidth, improving the overall optimization process.
      * Refactored existing code to utilize constants for warp sizes, enhancing maintainability and readability.
      * Added checks to ensure correct warp allocation and padding map handling, improving robustness in memory management strategies.
      
      * [Refactor] Update ConfigIndexBitwidthRewriter to Support Auto-Check Feature
      
      * Modified the constructor of `ConfigIndexBitwidthRewriter` to include an `auto_check` parameter, allowing for dynamic bitwidth adjustments based on input conditions.
      * Enhanced the `VisitExpr_` methods to apply the new auto-check logic, ensuring that integer types are upgraded to 64 bits when necessary, or to a specified index bitwidth otherwise.
      * Updated the `ConfigIndexBitwidth` pass to determine the index bitwidth based on the presence of configuration, improving flexibility in handling different scenarios.
      
      * Add dynamic matrix multiplication example and corresponding test
      
      * Introduced `example_dynamic.py` to demonstrate dynamic matrix multiplication using TileLang and PyTorch, including a main function for execution and performance profiling.
      * Added `test_example_dynamic.py` to validate the functionality of the dynamic matrix multiplication example.
      * The example includes detailed parameter configurations and checks against PyTorch's implementation for correctness.
      
      * lint fix
      
      * Add get_num_sms function to retrieve the number of streaming multiprocessors on the CUDA device
      
      * Implemented the `get_num_sms` function in `cuda_driver.py` to return the count of streaming multiprocessors for a specified CUDA device.
      * Updated the `__init__.py` file to include the new function in the module exports.
      
      * lint fix
      
      * Add global barrier state and expectation handling in CUDA code generation
      
      * Introduced `vid_global_barrier_state_` and `vid_global_barrier_expect_` to manage global barrier synchronization in the CUDA code generator.
      * Updated `Finish` method to declare the global barrier state if needed.
      * Implemented handling for `EvaluateNode` to initialize the barrier expectation.
      * Removed unnecessary extern declaration for the global barrier state in `PrintStorageSync` method.
      * Enhanced CUDA FP8 type definitions for better alignment and structure.
      
      * Enhance CUDA FP8 type handling and debug printing
      
      * Updated `cuda_fp8.h` to replace NVidia's FP8 types with Cute's FP8 types for better compatibility and structure.
      * Added specializations for `debug_print_var` and `debug_print_buffer_value` functions to support the new FP8 types, improving debugging capabilities for these data types.
      * Updated `debug.h` to include the new `cuda_fp8.h` header for access to the FP8 type definitions.
      
      * Refactor CUDA code generation to remove unnecessary managed qualifier for global barrier state
      
      * Updated the `Finish` method in `codegen_cuda.cc` to declare the global barrier state without the `__managed__` qualifier, simplifying the declaration.
      * Added a new `sync_global` function in `builtin.py` to synchronize all threads in a block, enhancing synchronization capabilities in the TileLang framework.
      
      * Remove deprecated CUDA kernel and Python script for FP8 E4M3 casting
      
      * Deleted the `cast_to_fp8_e4m3_kernel` CUDA kernel implementation and its corresponding Python script, streamlining the codebase by removing unused components related to FP8 E4M3 type casting.
      * This cleanup enhances maintainability and reduces potential confusion regarding obsolete code.
      
      * lint fix
      6addc509
  12. 25 May, 2025 1 commit
    • Lei Wang's avatar
      [Enhancement] Support auto synchronization for global memory access (#519) · 623edf4c
      Lei Wang authored
      * [Refactor] Enhance GEMM Warp Partitioning Logic and Introduce Buffer Remapping (#516)
      
      * Improved the warp partitioning logic in `Gemm::ComputeWarpPartition` to better accommodate various GEMM policies, including FullRow, FullCol, and Square, ensuring optimal performance based on matrix dimensions.
      * Introduced a new `RemapBufferRewriter` class to handle buffer reference updates and padding annotations during statement transformations, enhancing memory access safety and clarity.
      * Updated the `OptimizeForTarget` function to include a new step for configuring index bitwidth, improving the overall optimization process.
      * Refactored existing code to utilize constants for warp sizes, enhancing maintainability and readability.
      * Added checks to ensure correct warp allocation and padding map handling, improving robustness in memory management strategies.
      
      * [Refactor] Update ConfigIndexBitwidthRewriter to Support Auto-Check Feature
      
      * Modified the constructor of `ConfigIndexBitwidthRewriter` to include an `auto_check` parameter, allowing for dynamic bitwidth adjustments based on input conditions.
      * Enhanced the `VisitExpr_` methods to apply the new auto-check logic, ensuring that integer types are upgraded to 64 bits when necessary, or to a specified index bitwidth otherwise.
      * Updated the `ConfigIndexBitwidth` pass to determine the index bitwidth based on the presence of configuration, improving flexibility in handling different scenarios.
      
      * Add dynamic matrix multiplication example and corresponding test
      
      * Introduced `example_dynamic.py` to demonstrate dynamic matrix multiplication using TileLang and PyTorch, including a main function for execution and performance profiling.
      * Added `test_example_dynamic.py` to validate the functionality of the dynamic matrix multiplication example.
      * The example includes detailed parameter configurations and checks against PyTorch's implementation for correctness.
      
      * lint fix
      
      * Add get_num_sms function to retrieve the number of streaming multiprocessors on the CUDA device
      
      * Implemented the `get_num_sms` function in `cuda_driver.py` to return the count of streaming multiprocessors for a specified CUDA device.
      * Updated the `__init__.py` file to include the new function in the module exports.
      
      * lint fix
      
      * Add global barrier state and expectation handling in CUDA code generation
      
      * Introduced `vid_global_barrier_state_` and `vid_global_barrier_expect_` to manage global barrier synchronization in the CUDA code generator.
      * Updated `Finish` method to declare the global barrier state if needed.
      * Implemented handling for `EvaluateNode` to initialize the barrier expectation.
      * Removed unnecessary extern declaration for the global barrier state in `PrintStorageSync` method.
      * Enhanced CUDA FP8 type definitions for better alignment and structure.
      623edf4c
  13. 22 May, 2025 1 commit
    • Lei Wang's avatar
      [Bugfix] Enhance smem copy selector for uncommon shape (#510) · dbe8689f
      Lei Wang authored
      * [Refactor] Enhance GEMM warp partitioning logic for improved performance and flexibility
      
      * Updated the warp partitioning logic in `Gemm::ComputeWarpPartition` to better handle various GEMM policies, including FullRow, FullCol, and Square.
      * Implemented checks to dynamically adjust warp allocation based on matrix dimensions, ensuring optimal performance.
      * Introduced a new `SelectCopy` template to streamline memory access patterns in CUDA templates, enhancing compatibility across different architectures.
      * Refactored the Python `GemmWarpPolicy` class to align with the updated C++ logic, improving clarity and maintainability in warp allocation strategies.
      
      * [Refactor] Optimize matrix multiplication parameters and performance in quickstart example
      
      * Updated thread count in the kernel context from 256 to 128 to enhance performance.
      * Increased block sizes for matrix dimensions (M, N, block_M, block_N) to 1024 and 128 respectively, improving computational efficiency.
      * Adjusted the pipeline stages in the GEMM loop from 0 to 3 for better parallel execution.
      * Cleaned up comments for clarity and corrected a typo in the memory copy comment.
      
      * [Refactor] Simplify Copy type selection in OperandTraits for improved clarity
      
      * Replaced the conditional Copy type definition with a new SelectCopy template in OperandTraits, enhancing readability and maintainability of the code.
      * This change streamlines the logic for selecting memory copy patterns based on matrix dimensions and warp configurations.
      dbe8689f
  14. 17 May, 2025 3 commits
    • Lei Wang's avatar
      [Refactor] Update GEMM layout and operand traits for improved CUDA compatibility (#500) · 33937683
      Lei Wang authored
      * [Enhancement] Improve GEMM layout function and documentation
      
      * Added detailed documentation for the makeGemmABLayout function, explaining parameters and layout selection strategies.
      * Updated the layout selection logic to use mat_continuous consistently, enhancing clarity and correctness in memory layout calculations.
      * Adjusted the InferLayout method to reflect changes in the layout function, ensuring accurate matrix dimension handling for transposed cases.
      
      * lint fix
      
      * [Refactor] Update GEMM layout and operand traits for improved CUDA compatibility
      
      * Adjusted the InferLayout method in gemm.cc to include trans_A in fragment creation, enhancing layout inference for transposed matrices.
      * Updated OperandTraits in gemm_sm89.h and gemm_sm90.h to change the Copy type from SM75_U16x4_LDSM_N to SM75_U16x4_LDSM_T, optimizing memory access patterns for different warp configurations.
      * Enhanced static assertions in gemm_sm90.h to clarify requirements for num_warp_m, ensuring compatibility with Hopper architecture.
      
      * [Refactor] Clean up formatting in GEMM implementation and CUDA templates
      
      * Simplified the formatting of the fragment creation in the InferLayout method of gemm.cc for better readability.
      * Adjusted the static assertion message in gemm_sm90.h to enhance clarity regarding the num_warp_m requirement for Hopper architecture.
      33937683
    • Lei Wang's avatar
      [Bugfix] Rename SM75_U16x8_LDSM_N into SM75_U16x8_LDSM_T for correctness (#499) · 2837878f
      Lei Wang authored
      * Remove debug print statement from block_sparse_attn_triton.py and implement a timeout handler in autotuner for function execution. This enhances the robustness of the autotuner by allowing it to handle timeouts gracefully.
      
      * Enhance the autotuner module by adding a timeout handler for function execution, improving robustness in handling long-running tasks. This change includes the introduction of a custom TimeoutException and updates to the run_with_timeout function for better signal management.
      
      * Add merge shared memory allocations pass and related configurations
      
      - Introduced a new pass for merging shared memory allocations in GPU kernels, allowing for more efficient memory usage.
      - Registered configuration options for debugging and controlling the merging behavior.
      - Updated relevant files to integrate the new pass into the TileLang engine and transform modules.
      - Adjusted import paths and added documentation for the new functionality.
      
      * Reduce num_stages parameter in GEMM functions from 3 to 1 for improved performance in test_tilelang_kernel_gemm.py
      
      * Update Copy type in OperandTraits for GEMM templates to use conditional selection based on num_warp_n. This change enhances memory access patterns for different configurations in CUDA kernels.
      
      * lint fix
      
      * Update Copy type in OperandTraits for GEMM templates to use SM75_U16x4_LDSM_T and SM75_U16x8_LDSM_T for improved memory access patterns across CUDA architectures.
      2837878f
    • Lei Wang's avatar
      [Enhancement] Fallback transposed_ldmatrix into `SM75_U16x4_LDSM_N` when warp_n is 8 (#498) · 68a3c4f3
      Lei Wang authored
      * Remove debug print statement from block_sparse_attn_triton.py and implement a timeout handler in autotuner for function execution. This enhances the robustness of the autotuner by allowing it to handle timeouts gracefully.
      
      * Enhance the autotuner module by adding a timeout handler for function execution, improving robustness in handling long-running tasks. This change includes the introduction of a custom TimeoutException and updates to the run_with_timeout function for better signal management.
      
      * Add merge shared memory allocations pass and related configurations
      
      - Introduced a new pass for merging shared memory allocations in GPU kernels, allowing for more efficient memory usage.
      - Registered configuration options for debugging and controlling the merging behavior.
      - Updated relevant files to integrate the new pass into the TileLang engine and transform modules.
      - Adjusted import paths and added documentation for the new functionality.
      
      * Reduce num_stages parameter in GEMM functions from 3 to 1 for improved performance in test_tilelang_kernel_gemm.py
      
      * Update Copy type in OperandTraits for GEMM templates to use conditional selection based on num_warp_n. This change enhances memory access patterns for different configurations in CUDA kernels.
      
      * lint fix
      68a3c4f3
  15. 09 May, 2025 1 commit
    • Lei Wang's avatar
      [Feature] Implement fast integer power operation and related API (#466) · 1f5eb492
      Lei Wang authored
      * [Refactor] Enhance TMA barrier validation and support for additional architectures (#463)
      
      * Updated the TMA barrier validation in `inject_tma_barrier.cc` to check for non-empty `barrier_id_to_range_` before raising an error for missing `create_list_of_mbarrier`.
      * Refactored architecture checks in `phase.py` to utilize a new constant `SUPPORTED_TMA_ARCHS`, allowing for easier updates and improved readability in the target architecture validation logic.
      
      * [Feature] Implement fast integer power operation and related API
      
      * Added a new math operation `tl.power_of_int` in `math.cc` for efficient integer exponentiation.
      * Introduced a corresponding Python API `pow_of_int` in `tir/op.py` to facilitate usage in TileLang.
      * Enhanced `common.h` with a template function for integer power calculations.
      * Updated documentation to reflect the new functionality and usage examples.
      1f5eb492
  16. 06 May, 2025 1 commit
    • Lei Wang's avatar
      [Feature] Add TILELANG_CHECK_LAST_ERROR macro for improved error handling in CUDA and HIP (#450) · 0a8c8b99
      Lei Wang authored
      * [Feature] Add TILELANG_CHECK_LAST_ERROR macro for improved error handling in CUDA and HIP
      
      * Introduced TILELANG_CHECK_LAST_ERROR macro to streamline error checking for kernel launches in both CUDA and HIP.
      * Updated kernel launch code in wrapper.py to utilize the new macro, enhancing readability and maintainability.
      * This change improves error reporting by providing detailed messages when kernel execution fails.
      
      * [Refactor] Standardize error message formatting in TILELANG_CHECK_LAST_ERROR macro
      
      * Updated the TILELANG_CHECK_LAST_ERROR macro in both CUDA and HIP implementations to ensure consistent formatting of error messages.
      * Enhanced readability by aligning the error message structure across different platforms, improving maintainability of error handling code.
      0a8c8b99
  17. 29 Apr, 2025 1 commit
    • Lei Wang's avatar
      [Bugfix] Fix layout inference for free fragment buffer (#443) · 2ea45ae9
      Lei Wang authored
      * [Enhancement] Improve layout inference accuracy in ParallelOp (#441)
      
      * Added logic to use non-replicated buffers as source buffers for more accurate layout inference.
      * Enhanced comments to clarify the rationale behind buffer selection in layout inference process.
      
      * [Enhancement] Add error handling macros and refactor loop partitioning logic
      
      * Introduced TILELANG_CHECK macro for improved error handling in CUDA and HIP code, providing detailed error messages for kernel launches.
      * Enhanced loop partitioning logic to handle fragment buffers more effectively, ensuring correct replication based on thread extent.
      * Added logging for thread range in PlanLoopPartition to aid in debugging and performance analysis.
      * Updated pass configuration management to streamline vectorization control in the optimization process.
      
      * lint fix
      
      * remove debug print
      2ea45ae9
  18. 25 Apr, 2025 1 commit
    • Lei Wang's avatar
      [Enhancement] Support cute mma tile mxn8ky (#434) · d1c15bc5
      Lei Wang authored
      * [Enhancement] Improve error handling in layout inference and update profiler type in tests
      
      * Added a detailed error message in the layout inference for local.fragment to clarify the requirement for trans_B.
      * Updated the profiler type in the cumulative sum test from TensorSupplyType.One to TensorDistributionType.Randn for better profiling accuracy.
      
      * lint fix
      
      * [Refactor] Update OperandTraits to include num_warp_n parameter
      
      * Modified OperandTraits templates across gemm_sm80.h, gemm_sm89.h, and gemm_sm90.h to include an additional num_warp_n parameter for improved flexibility in layout and copy operations.
      * Adjusted Copy type selection based on the new parameter to enhance performance and adaptability in various scenarios.
      
      * lint fix
      
      * [Refactor] Update DispatchInstruction templates to include N parameter
      
      * Modified DispatchInstruction templates in gemm_sm80.h, gemm_sm89.h, and gemm_sm90.h to include an additional N parameter, enhancing flexibility in tile size calculations.
      * Adjusted MMA_Group definitions to use std::min for improved handling of warp sizes, ensuring better performance and adaptability in various scenarios.
      d1c15bc5
  19. 22 Apr, 2025 1 commit
    • Lei Wang's avatar
      [Language] Support tile operator `T.cumsum` (#423) · 88747fcd
      Lei Wang authored
      * [Feature] Implement CumSum operation in TileLang
      
      * Added CumSumOp class for cumulative sum operations, including argument validation and lowering logic.
      * Introduced CumSum2D template for CUDA, supporting both forward and reverse cumulative sums.
      * Created tests for CumSum functionality in shared memory and fragment contexts.
      * Updated language interface to include cumsum operation, enhancing the reduction capabilities of TileLang.
      * Refactored reduce.py to support cumsum functionality with appropriate memory allocation and copying mechanisms.
      
      * lint fix
      88747fcd
  20. 16 Apr, 2025 1 commit
  21. 11 Apr, 2025 1 commit
    • Lei Wang's avatar
      [Language] Introduce `T.any_of` and `T.all_of` to reduce a bool arrary (#371) · c4638d65
      Lei Wang authored
      
      
      * [Enhancement] Introduce logical operations `any_of` and `all_of` for buffer checks
      
      - Added new logical operations `any_of` and `all_of` to the TileLang language interface, allowing users to check conditions across buffer elements.
      - Implemented corresponding intrinsic calls for CUDA, enhancing the functionality of the TileLang framework.
      - Updated the `allocate.py` to handle boolean types correctly in shared memory allocations.
      - Introduced tests for the new logical operations to ensure correctness and performance.
      Co-authored-by: default avatarZhiwen Mo <zhiwen.mo25@ic.ac.uk>
      
      * lint fix
      
      ---------
      Co-authored-by: default avatarZhiwen Mo <zhiwen.mo25@ic.ac.uk>
      c4638d65
  22. 04 Apr, 2025 2 commits
    • Lei Wang's avatar
      [Enhancement] Add new matrix multiplication functions and tests for GEMM with... · 9e5a757e
      Lei Wang authored
      [Enhancement] Add new matrix multiplication functions and tests for GEMM with transpose options (#331)
      
      - Introduced `matmul_rs` function for flexible matrix multiplication with optional transposition.
      - Added `run_gemm_rs` function to facilitate testing of the new matrix multiplication implementation.
      - Expanded test coverage for GEMM with additional cases for transposition configurations.
      - Corrected index usage in `gemm.h` to ensure proper matrix layout handling.
      
      These changes enhance the GEMM functionality and improve testing capabilities for various matrix configurations.
      9e5a757e
    • Lei Wang's avatar
      [AMD] Adapt rocm and support `T.gemm` with transpose_b=False for amd backend (#327) · eab47249
      Lei Wang authored
      
      
      * [Enhancement] Update GEMM and ROCm Integration
      
      - Removed the restriction on transposing matrix B for CDNA in `gemm.cc`, allowing for more flexible matrix operations.
      - Added a new debug header file `debug.h` for enhanced debugging capabilities in ROCm kernels.
      - Updated `codegen_hip.cc` to include the new debug header and improved handling of float16 and bfloat16 types in vector element stores.
      - Refactored `rt_mod_hip.cc` to return a ROCM module directly from `BuildTileLangHIPWithoutCompile`, enhancing the module creation process.
      - Introduced a new ROCm utility in `rocm.py` for linking and managing ROCm paths, improving the build process for ROCm applications.
      - Updated tests to reflect changes in GEMM configurations and ensure compatibility with the new features.
      
      These changes enhance the flexibility and debugging capabilities of the GEMM operations and improve the integration with the ROCm backend.
      
      * [Fix] Corrected syntax error in pyproject.toml and improved error message formatting in rocm.py
      
      - Added missing quotation mark for "HSA" in the `select` section of `pyproject.toml`.
      - Simplified the error message formatting in `get_rocm_arch` function of `rocm.py` for better readability and consistency.
      
      * lint fix
      
      * Update tilelang/jit/adapter/wrapper.py
      Co-authored-by: default avatarCopilot <175728472+Copilot@users.noreply.github.com>
      
      * lint fix
      
      ---------
      Co-authored-by: default avatarCopilot <175728472+Copilot@users.noreply.github.com>
      eab47249
  23. 03 Apr, 2025 1 commit
  24. 30 Mar, 2025 1 commit
    • Lei Wang's avatar
      [Enhancement] Add support for CUDA architecture 8.9 in GEMM template (#304) · edbb9b6d
      Lei Wang authored
      * [Enhancement] Add support for CUDA architecture 8.9 in GEMM template
      
      - Introduced conditional inclusion of "gemm_sm89.h" for CUDA architectures 8.9 and above, enhancing compatibility with newer hardware.
      - This change ensures that the GEMM template can leverage optimizations specific to the 8.9 architecture, improving performance for users with compatible GPUs.
      
      * lintfix
      
      * [Refactor] Clean up includes in gemm_sm89.h
      
      - Removed duplicate inclusion of "common.h" and added "cuda_fp8.h" for improved clarity and organization.
      - This change enhances the maintainability of the code by ensuring that header files are included only once and in a logical order.
      edbb9b6d
  25. 28 Mar, 2025 1 commit
  26. 27 Mar, 2025 1 commit
    • Lei Wang's avatar
      [Bugfix] Enable bfloat16 atomic operations only for CUDA architectures greater than 7.5 (#291) · 83412458
      Lei Wang authored
      * [Refactor] Improve flash attention example and layout comparison logic
      
      - Removed unnecessary annotation for `lse_local_split` in the flash attention example to streamline the code.
      - Updated the handling of `lse_local_split` to utilize parallel processing for better performance.
      - Refactored kernel compilation and profiling logic to enhance clarity and maintainability in the flash attention example.
      - Added a condition in `FragmentNode::IsEqual` to handle broadcast cases, improving the robustness of layout comparisons.
      
      * lint fix
      
      * [Enhancement] Add support for shared memory scope in Fill operation
      
      - Introduced handling for `shared.dyn` and `shared` memory scopes in the Fill operation.
      - Implemented parallel operation and layout inference for improved performance in shared memory scenarios.
      - Updated thread loop partitioning and vectorization logic to accommodate new memory scope handling.
      
      * [Refactor] Remove deprecated decorator and enhance Cython kernel handling
      
      - Removed the deprecated decorator from the main module and added a new implementation in the utils module for better organization.
      - Introduced a pointer map in the Cython kernel adapter to manage pointer arguments, improving runtime shape resolution.
      - Updated the Cython kernel wrapper to utilize the new pointer map for handling kernel arguments.
      - Enhanced error checking in the tensor utility functions to ensure static shapes are enforced.
      - Added a new proxy module for buffer and tensor handling, streamlining the interface for TIR programs.
      
      * [Feature] Add matrix multiplication test and kernel implementation
      
      - Introduced a new test file `test_tilelang_language_ptr.py` that implements a matrix multiplication function using TileLang's primitives.
      - The `matmul_test` function defines a kernel for performing tile-level GEMM operations with customizable block sizes and data types.
      - Added a `run_matmul` function to compile and execute the kernel, along with a test function to validate the implementation.
      - Updated the `proxy.py` file to enhance type handling for buffer and tensor proxies, ensuring compatibility with TIR programs.
      - Minor formatting improvements in `deprecated.py` for better readability.
      
      * lint fix
      
      * [Refactor] Update tensor creation in matrix multiplication test
      
      - Replaced `T.Tensor.from_ptr` with `T.make_tensor` in `matmul_test` for improved clarity and consistency.
      - Updated imports in `__init__.py` to include `make_tensor`.
      - Added `make_tensor` function in `proxy.py` to streamline tensor creation from pointers.
      
      * [Refactor] Update tensor definitions across multiple files
      
      - Replaced instances of `T.Tensor` with updated tensor definitions in various benchmark and example files to enhance consistency and clarity.
      - Adjusted tensor shapes and types in functions related to matrix multiplication, attention mechanisms, and other operations.
      - Improved documentation in README and example files to reflect changes in tensor usage.
      
      * lint fix
      
      * [Refactor] Update tensor types in attention and matrix multiplication examples
      
      - Replaced instances of `T.Tensor` with `T.SharedTensor` and `T.FragmentTensor` in various attention and matrix multiplication functions to improve consistency and clarity.
      - Adjusted tensor definitions in benchmark and example files to align with the new tensor types.
      - Enhanced the overall structure and readability of the code by standardizing tensor usage across multiple files.
      
      * lint fix
      
      * [Refactor] Update tensor types in GEMM example and test files
      
      - Replaced instances of `T.Tensor` with `T.LocalTensor` and `T.Buffer` in the GEMM example and related test functions to improve consistency and clarity.
      - Enhanced the overall structure of the code by standardizing tensor usage across multiple files, aligning with recent updates in tensor definitions.
      
      * [Refactor] Update tensor usage in customize.py
      
      - Replaced instances of `T.Tensor` with `T.Buffer` in the `reshape` and `view` functions to enhance consistency with recent tensor definitions.
      - Improved code clarity by standardizing buffer usage across the file.
      
      * [Refactor] Update tensor types in test_tilelang_transform_annotate_device_regions.py
      
      - Replaced instances of `T.Tensor` with `T.Buffer` in the `before` and `expected` methods of the `TestAnnotateThreadExtent` and `TestAnnotateDeviceScope` classes to enhance consistency with recent tensor definitions.
      - Improved code clarity by standardizing buffer usage across the test file.
      
      * [Refactor] Update tensor types to SharedBuffer and FragmentBuffer
      
      - Replaced instances of `T.SharedTensor` and `T.FragmentTensor` with `T.SharedBuffer` and `T.FragmentBuffer` across multiple benchmark, example, and test files to enhance consistency with recent tensor definitions.
      - Improved code clarity and structure by standardizing buffer usage in attention and matrix multiplication functions.
      
      * [Refactor] Introduce Tensor alias for Buffer in proxy.py
      
      - Added a new alias `Tensor` for `Buffer` in `proxy.py` to facilitate JIT compilation, ensuring that inputs and outputs are mapped with `torch.Tensor`.
      - This change enhances clarity and consistency in tensor usage across the codebase.
      
      * [Refactor] Revamp cache management and enhance documentation in env.py and proxy.py
      
      - Replaced global cache functions with a CacheState class to improve encapsulation and management of kernel caching.
      - Updated the `from_ptr` method in BufferProxy and BaseTensorProxy classes to include detailed docstrings for better clarity on parameters and return values.
      - Enhanced class docstrings across various proxy classes to provide clearer descriptions of their purpose and functionality, improving overall code documentation.
      
      * [Refactor] Update imports in __init__.py for tir compatibility
      
      - Added imports for `prim_func` and `tir.op` to enhance compatibility with the upstream tir script.
      - Marked imports with `# noqa: F401` to suppress linting warnings for unused imports, indicating future removal once compatibility is achieved.
      
      * lint fix
      
      * [Refactor] Update imports in tir.ir.py for improved compatibility
      
      - Removed unused import of `PrimExpr` from `tvm.script.ir_builder.tir` and replaced it with the correct import from `tvm.tir`.
      - Added import for `tir.ir` in `__init__.py` to enhance module accessibility and maintain compatibility with upstream changes.
      
      * [Refactor] Update function calls in tir.ir.py to return values
      
      - Modified the `serial`, `parallel`, `vectorized`, `unroll`, `thread_binding`, and `grid` functions to return the results of their respective calls to `_ir` methods, enhancing clarity and ensuring proper value propagation.
      
      * bugfix
      
      * [Enhancement] Add support for uint16 data type in TLCUDASourceWrapper
      
      - Introduced the "uint16" mapping to the type dictionary in the TLCUDASourceWrapper class, expanding the range of supported data types for CUDA operations.
      
      * bugfix
      
      * [Update] Sync subproject commit and modify CUDA atomic add functions
      
      - Updated the subproject commit for TVM to edd35139a0481e9359aa269e3e50450b95ba2f5a.
      - Commented out the CUDA capability check in the example convolution script to prevent execution errors.
      - Refactored atomic add functions for BFLOAT16 in common.h to include a conditional compilation directive for improved compatibility with CUDA architectures.
      83412458
  27. 20 Mar, 2025 1 commit
    • Lei Wang's avatar
      [Refactor] Phaseout LLVM Dependency by Making it Optional (#247) · f2e99180
      Lei Wang authored
      * remove llvm build
      
      * [Refactor] Update kernel compilation and profiling in examples
      
      - Replaced `tilelang.lower` with `tilelang.compile` in multiple example scripts to streamline kernel compilation.
      - Updated profiling calls to utilize the new `get_profiler` method, enhancing performance measurement consistency.
      - Adjusted assertions and benchmarking methods to align with the new profiling structure across various examples, ensuring correctness and clarity in performance evaluations.
      
      * lint fix
      
      * License Update
      
      * [Refactor] Improve code formatting and documentation in CUDA header and HIP runtime files
      
      - Adjusted formatting in `cuda.h` for better readability, including alignment of comments and struct fields.
      - Cleaned up whitespace and improved comment clarity in `rt_mod_hip.cc` to enhance code maintainability.
      
      * [Refactor] Enhance formatting and clarity in CUDA header and HIP runtime files
      
      - Improved comment alignment and readability in `cuda.h`.
      - Cleaned up whitespace and formatting in `rt_mod_hip.cc` to enhance maintainability.
      
      * lint fix
      
      * lint fix
      
      * lint fix
      
      * lint fix
      
      * fix
      
      * License update
      
      * [Enhancement] Update JITKernel to use artifact for kernel source
      
      - Assigned the generated artifact to `self.artifact` for better management.
      - Updated kernel source references to use `artifact.kernel_source` for consistency in execution backend handling.
      
      * lint fix
      
      * Add @tilelang.testing.requires_llvm decorator to vectorization tests
      
      * Enhance setup.py and env.py for library management
      
      - Added functionality to remove original files after copying in CMakeBuild.
      - Updated TVM_LIBRARY_PATH in env.py to include the PyPI build library path for better integration.
      
      * Refactor TVM_LIBRARY_PATH assignment for improved readability in env.py
      
      * Refactor CMakeBuild file handling in setup.py
      
      - Added a check to ensure the target library directory exists before copying .so files.
      - Improved the logic for creating the target directory and copying files to enhance robustness.
      
      * bugfix
      
      * Rename BuildTLDebug to BuildTileLangCUDAWithoutCompile and update registration. Add @tilelang.testing.requires_llvm decorator to multiple tests for LLVM requirement.
      
      * lint fix
      
      * Enhance TileLang code generation by adding support for device code generation without compilation. Updated `host_codegen` and `device_codegen` functions to include new transformations and registration for `tilelang_hip_without_compile`. Refactored JIT kernel adapters to accommodate host and device modules, improving overall integration and flexibility.
      
      * lint fix
      
      * Add support for C target in device code generation
      
      - Updated `device_codegen_without_compile` to include handling for the C target by registering the `tilelang_cpp` function.
      
      * [Enhancement] Implement auto-clear cache feature based on environment variable
      
      * Added TILELANG_CLEAR_CACHE environment variable to control cache clearing.
      * Updated CI workflow to set TILELANG_CLEAR_CACHE during testing.
      * Modified cache initialization to clear cache if TILELANG_CLEAR_CACHE is set to true.
      
      * [Refactor] Update kernel invocation and import paths in tests and cache
      
      * Changed kernel invocation in `test_tilelang_kernel_dequantize_gemm.py` to return the result.
      * Updated import statements in `test_tilelang_kernel_int4_gemm_mma.py` to use `bitblas` instead of `tilelang`.
      * Refactored paths for artifact and parameters in `kernel_cache.py` for better maintainability.
      
      * [Refactor] Clean up whitespace and improve code formatting in kernel_cache.py
      
      * Removed unnecessary blank lines and adjusted spacing for better readability in the KernelCache class.
      * Enhanced overall code formatting to align with project standards.
      
      * [Enhancement] Add bfloat16 test case and improve kernel caching logic
      
      * Introduced a new test case for bfloat16 matrix multiplication in `test_tilelang_kernel_gemm_mma_intrinsic.py`.
      * Updated `KernelCache` to handle multiple kernel source files and improve error handling during saving and loading.
      * Refactored `JITKernel` to support instantiation from a database, enhancing flexibility in kernel management.
      * Adjusted `CtypesKernelAdapter` and `CythonKernelAdapter` to utilize the new kernel loading mechanism from the database.
      * Improved code formatting and readability across several files.
      
      * lint fix
      
      * Update bfloat16 matrix multiplication test case to use larger dimensions for improved coverage
      f2e99180
  28. 19 Mar, 2025 1 commit
    • Yu Cheng's avatar
      [Enhancement] Add zero initialization option to GEMM operations (#246) · 701e9234
      Yu Cheng authored
      * [Enhancement] Add zero initialization option to GEMM operations
      
      - Introduced a new `zero_init` parameter to the GEMM function, allowing for optional zero initialization of the accumulator.
      - Updated the GEMM implementation across various CUDA architectures to support the new parameter.
      - Modified the Python interface for GEMM to include the `zero_init` argument, enhancing flexibility in kernel execution.
      - Ensured compatibility with existing functionality while improving initialization control for performance optimization.
      
      * rename zero_init to clear_accum
      
      * lint
      701e9234
  29. 17 Mar, 2025 1 commit
    • Lei Wang's avatar
      [Bugfix] Disable force inline for ldmatrix (#227) · a1da26f2
      Lei Wang authored
      * Refactor GEMM and Bulk Copy operations to enhance layout handling and support for Hopper architecture
      
      - Update `ComputeWarpPartition` to include a new parameter for Hopper WGMMA support.
      - Modify layout checks in `LowerBulkCopy` to accommodate new GEMM layout types.
      - Enhance layout inference logic in `InferLayout` for better compatibility with Hopper architecture.
      - Include necessary header files for built-in operations and layout inference improvements.
      
      * Refactor parameter formatting in CUDA matrix load functions for consistency
      
      - Adjusted parameter alignment in `ptx_ldmatrix_x1`, `ptx_ldmatrix_x2`, `ptx_ldmatrix_x4`, and their transposed counterparts for improved readability.
      - Added a blank line in `get_tensor_supply` function in `tensor.py` to enhance code clarity.
      
      * Enhance tensor supply generation in `get_tensor_supply` function
      
      - Introduced handling for unsigned integer and float8 tensor types, allowing for specific random tensor generation based on data type.
      - Updated logic to return appropriate random tensors for different data types, improving flexibility and functionality of tensor supply generation.
      - Refactored existing conditions for clarity and maintainability.
      
      * Fix tensor supply generation logic in `get_tensor_supply` function
      
      - Updated the variable reference from `tensor` to `param` to ensure correct handling of tensor data types.
      - Improved the accuracy of unsigned integer and float8 checks for tensor supply generation, enhancing functionality and reliability.
      
      * Enhance tensor supply checks in `get_tensor_supply` function
      
      - Updated the logic for identifying unsigned integers and float8 types by using `removeprefix` on the dtype string, improving accuracy in tensor supply generation.
      - Ensured better handling of tensor data types for more reliable random tensor generation based on the updated checks.
      
      * Enhance KernelParam functionality and improve tensor supply checks
      
      - Added methods `is_unsigned` and `is_float8` to the `KernelParam` class for better type identification of parameters.
      - Updated the `get_tensor_supply` function to utilize the new methods, improving clarity and accuracy in tensor supply generation based on parameter types.
      a1da26f2
  30. 16 Mar, 2025 1 commit
  31. 14 Mar, 2025 1 commit
    • Lei Wang's avatar
      [Enhancement] Allow mma fallback when wgmma is not supported (#206) · 45559a1f
      Lei Wang authored
      * Enhance error message for constant size stack allocation in CUDA codegen. Include the actual constant size and buffer variable name in the error output for better debugging.
      
      * Refactor GEMM and Bulk Copy operations to enhance layout handling and support for Hopper architecture
      
      - Update `ComputeWarpPartition` to include a new parameter for Hopper WGMMA support.
      - Modify layout checks in `LowerBulkCopy` to accommodate new GEMM layout types.
      - Enhance layout inference logic in `InferLayout` for better compatibility with Hopper architecture.
      - Include necessary header files for built-in operations and layout inference improvements.
      
      * lint fix
      
      * Remove unused builtin.h include directive
      
      * Update include path for builtin.h
      45559a1f
  32. 13 Mar, 2025 1 commit
    • zqh-wz's avatar
      [Feature] Upgrade cutlass version and support fp8 T.gemm (#202) · 2cccf1f5
      zqh-wz authored
      
      
      * upgrade cutlass to upstream v3.8.0
      
      * Implement fp8 gemm and add example script
      
      * Fix dtype retrieval with map_torch_type for fp8 inputs
      
      * Disable vectorization of fp8 values
      
      * Make MMA declaration compatible with cutlass 3.4.0+
      
      * Add test for fp8 T.gemm
      
      * fix indent
      
      * fix indent
      
      * Add copyright and license header
      
      * Add copyright and license header
      
      * lint fix
      
      * Refactor matmul_nt and assert_matmul_correctness functions for improved readability by consolidating parameter definitions and adjusting formatting.
      
      * clang format lint
      
      ---------
      Co-authored-by: default avatarLei Wang <34334180+LeiWang1999@users.noreply.github.com>
      Co-authored-by: default avatarLeiWang1999 <leiwang1999@outlook.com>
      2cccf1f5
  33. 12 Mar, 2025 1 commit
    • Yu Cheng's avatar
      [Feature] Add TMA Store Synchronization Support (#195) · eba7dd5a
      Yu Cheng authored
      - Introduce TMAStoreArrive and TMAStoreWait operations for CUDA TMA store synchronization
      - Add new builtin operations in op/builtin.cc and op/builtin.h
      - Implement TMAStoreSyncInjector to automatically inject TMA store synchronization calls
      - Update CUDA codegen to support new TMA store synchronization intrinsics
      - Add Python language bindings for new TMA store synchronization operations
      eba7dd5a
  34. 11 Mar, 2025 1 commit
    • Yu Cheng's avatar
      [Dev][Bugfix] Add RMS Normalization Kernels and Fix Reduce Bug (#188) · fe0de672
      Yu Cheng authored
      * [Dev][Bugfix] Add RMS Normalization Kernels and Fix Reduce Bug
      
      - Implement two RMS normalization implementations in TileLang:
        * `rms_norm_splitk`: Split-K reduction approach for large matrices
        * `rms_norm`: Full reduction kernel with simplified implementation
      - Add reference implementation using PyTorch for validation
      - Include performance benchmarking for both kernel variants
      - Demonstrate flexible block size and matrix size configurations
      
      * [Examples] Simplify RMS Normalization Kernel Compilation
      
      - Remove commented-out code for split-K RMS normalization
      - Simplify kernel compilation by removing explicit TMA lowering configuration
      - Update copyright header to Tile-AI Corporation
      - Streamline main script for RMS normalization example
      fe0de672
  35. 06 Mar, 2025 1 commit
    • xs-keju's avatar
      Add cpu jit with backend ctypes (#154) · 782ca9f6
      xs-keju authored
      
      
      * Add cpu jit with backend ctypes
      
      * Resolve some lint issues
      
      * Apply PR feedback on head file and kernel example
      
      * Add test cases
      
      * Resolve formatting issues
      
      * Resolve formatting issues
      
      ---------
      Co-authored-by: default avatarxxw <1990389406@qq.con>
      782ca9f6