pipeline_planning.cc 27.2 KB
Newer Older
1
#include <tvm/arith/analyzer.h>
2
#include <tvm/ffi/reflection/registry.h>
3
#include <tvm/tir/analysis.h>
4
#include <tvm/tir/builtin.h>
5
#include <tvm/tir/op.h>
6
7
8
#include <tvm/tir/stmt_functor.h>
#include <tvm/tir/transform.h>

9
#include "../op/builtin.h"
10
#include <unordered_map>
11
12
#include <utility>

13
#include "../target/utils.h"
14
#include "tvm/ir/expr.h"
15
16
17
18
19
20
21
22
23
24
25
26

namespace tvm {
namespace tl {

using namespace tir;

/*!
 * \brief Check whether two regions have intersections.
 * \param region1 The first region.
 * \param region2 The second region.
 * \return Whether region1 and region2 have intersections.
 */
27
bool MayConflict(const Region &region1, const Region &region2) {
28
29
30
31
32
33
34
35
36
37
38
39
40
  ICHECK(region1.size() == region2.size());
  for (size_t i = 0; i < region1.size(); i++) {
    Range dim1 = region1[i];
    Range dim2 = region2[i];
    auto int_set1 = arith::IntSet::FromRange(dim1);
    auto int_set2 = arith::IntSet::FromRange(dim2);
    if (arith::Intersect({int_set1, int_set2}).IsNothing()) {
      return false;
    }
  }
  return true;
}

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
class TmemLoadCollector : public StmtExprVisitor {
public:
  TmemLoadCollector() {}

  Buffer result;

private:
  void VisitExpr_(const BufferLoadNode *op) {
    Buffer buf = op->buffer;
    if (buf->data->type_annotation.as<PointerTypeNode>()->storage_scope ==
        "shared") {
      // We only care about shared.tmem buffers
      ICHECK(!result.defined())
          << "TmemLoadCollector: More than one shared buffer visited";
      result = buf;
    }
  }
};

/*!
 * \brief Build the dependency chain between async operations and their
 *        corresponding buffers & synchronizations.
 *
 *        Example:
 *        If we encounter the following pattern:
 *
 *        tcgen5mma_gemm_ts(..., mbar, ...)
 *        mbarrier_wait_parity(mbar)
 *
 *        The builder will link the mbarrier to the buffers used in the
 * TCGEN5MMA
 */
class AsyncDependencyChainBuilder : public StmtExprVisitor {
public:
  AsyncDependencyChainBuilder(Map<Var, Buffer> buffer_data_to_buffer)
      : buffer_data_to_buffer_(buffer_data_to_buffer) {}

  std::unordered_map<const BufferNode *, Array<BufferRegion>>
      mbar_to_buffer_reads_;

  std::unordered_map<const BufferNode *, Array<BufferRegion>>
      mbar_to_buffer_writes_;

private:
  Map<Var, Buffer> buffer_data_to_buffer_;

  void VisitExpr_(const CallNode *op) final {
    auto args = op->args;
    if (op->op.same_as(builtin::call_extern())) {
      std::string func_name_with_template = args[0].as<StringImmNode>()->value;
      std::size_t le_pos = func_name_with_template.find_first_of('<');
      std::string func_name = le_pos == std::string::npos
                                  ? func_name_with_template
                                  : func_name_with_template.substr(0, le_pos);
95
96
97
      // TODO(lei): refactor to use identical ops.
      if (func_name == "tl::tcgen5mma_gemm_ts" ||
          func_name == "tl::tcgen5mma_gemm_ss") {
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
        // TCGEN5MMA
        auto get_buf_from_access_ptr_call =
            [&](const PrimExpr &expr) -> Buffer {
          auto call = expr.as<CallNode>();
          ICHECK(call);
          ICHECK(call->op.same_as(builtin::tvm_access_ptr()));
          auto var = call->args[1].as<VarNode>();
          ICHECK(var);
          auto it = buffer_data_to_buffer_.find(GetRef<Var>(var));
          ICHECK(it != buffer_data_to_buffer_.end());
          return (*it).second;
        };
        Buffer a_buf = get_buf_from_access_ptr_call(args[1]);
        Buffer b_buf = get_buf_from_access_ptr_call(args[2]);
        Buffer mbar_buf = get_buf_from_access_ptr_call(args[4]);

        TmemLoadCollector tmem_collector;
        tmem_collector(args[3]);
        ICHECK(tmem_collector.result.defined())
            << "TmemLoadCollector: No tmem buffer load found in the TCGEN5MMA "
               "call";
        Buffer c_buf = tmem_collector.result;

        PrimExpr clear_accum = args[5];
        mbar_to_buffer_reads_[mbar_buf.get()].push_back(
            BufferRegion::FullRegion(a_buf));
        mbar_to_buffer_reads_[mbar_buf.get()].push_back(
            BufferRegion::FullRegion(b_buf));
        mbar_to_buffer_writes_[mbar_buf.get()].push_back(
            BufferRegion::FullRegion(c_buf));
        auto analyzer = std::make_shared<arith::Analyzer>();
        if (!analyzer->CanProveEqual(clear_accum, Bool(true))) {
          mbar_to_buffer_reads_[mbar_buf.get()].push_back(
              BufferRegion::FullRegion(c_buf));
        }
      }
      // TODO (lei) Link wgmma to buffers and tl.wait_wgmma
    } else if (op->op.same_as(tir::builtin::if_then_else())) {
      const PrimExpr &then_expr = args[1];
      const PrimExpr &else_expr = args[2];
      this->VisitExpr(then_expr);
      this->VisitExpr(else_expr);
    } else {
      StmtExprVisitor::VisitExpr_(op);
    }
  }
};

146
147
148
149
150
151
/*!
 * \brief Detect if a statement follows the global memory copy pattern:
 *        1. Contains exactly one buffer store operation
 *        2. Source buffer must be in global memory scope
 *        3. Destination buffer must be in local or shared memory scope
 */
152
class BufferRegionCollector : public StmtExprVisitor {
153
public:
154
155
156
157
  BufferRegionCollector(Map<Var, Buffer> buffer_data_to_buffer,
                        const AsyncDependencyChainBuilder &chain_builder)
      : buffer_data_to_buffer_(buffer_data_to_buffer),
        chain_builder_(chain_builder) {}
158
159
160
161
162
163
164

  Array<BufferRegion> GetReads() const { return reads_; }

  Array<BufferRegion> GetWrites() const { return writes_; }

  bool GetGlobalCopyPattern() const { return is_global_copy_pattern_; }

165
166
167
private:
  void VisitStmt_(const BufferStoreNode *op) final {
    Buffer store_buffer = op->buffer;
168
169
170
171
172
173
174
175
176
    Array<PrimExpr> indices = op->indices;
    // convert indices to region
    Array<Range> region;
    for (const auto &index : indices) {
      region.push_back(Range::FromMinExtent(index, 1));
    }
    auto store_region = BufferRegion(store_buffer, region);
    writes_.push_back(store_region);

177
178
179
    is_global_read_ = false;
    this->VisitExpr(op->value);
    if (is_global_read_ && (store_buffer.scope() == "shared" ||
180
                            store_buffer.scope() == "shared.dyn")) {
181
182
183
184
185
186
      is_global_copy_pattern_ = true;
    }
    is_global_read_ = false;
  }

  void VisitExpr_(const BufferLoadNode *op) final {
187
188
189
190
191
192
193
194
195
196
    auto load_buffer = op->buffer;
    Array<PrimExpr> indices = op->indices;
    // convert indices to region
    Array<Range> region;
    for (const auto &index : indices) {
      region.push_back(Range::FromMinExtent(index, 1));
    }
    auto load_region = BufferRegion(load_buffer, region);
    reads_.push_back(load_region);

197
198
199
200
201
    if (op->buffer.scope() == "global" && !within_condition_expr_) {
      // skip condition expr of if_then_else node
      // shared[i] = T.if_then_else(global[i] < n, register_a[i], register_b[i])
      // is not a global read shared[i] = T.if_then_else(global[i] < n,
      // global_a[i], global_b[i]) is a global read
202
203
204
205
206
207
      is_global_read_ = true;
    }
  }

  void VisitExpr_(const CallNode *op) final {
    auto args = op->args;
208
    if (op->op.same_as(builtin::address_of())) {
209
210
211
212
213
214
215
216
217
218
219
220
221
222
      BufferRegion buffer_region;
      if (const auto *load = op->args[0].as<BufferLoadNode>()) {
        buffer_region = BufferRegion::FullRegion(load->buffer);
      } else if (const auto *var_node = op->args[0].as<VarNode>()) {
        Var data_var = GetRef<Var>(var_node);
        auto it = buffer_data_to_buffer_.find(data_var);
        if (it != buffer_data_to_buffer_.end()) {
          buffer_region = BufferRegion::FullRegion((*it).second);
        }
      }
      if (buffer_region.defined()) {
        // because we only care about the buffer itself instead of indices
        reads_.push_back(buffer_region);
      }
223
224
225
226
227
228
229
230
231
232
    } else if (op->op.same_as(builtin::tvm_access_ptr())) {
      const VarNode *buffer_var = op->args[1].as<VarNode>();
      ICHECK(buffer_var);
      auto it = buffer_data_to_buffer_.find(GetRef<Var>(buffer_var));
      if (it != buffer_data_to_buffer_.end()) {
        const Buffer &buffer = (*it).second;
        const BufferRegion buffer_region = BufferRegion::FullRegion(buffer);
        // because we only care about the buffer itself instead of indices
        reads_.push_back(buffer_region);
      }
233
234
235
236
237
238
239
    } else if (op->op.same_as(builtin::if_then_else())) {
      within_condition_expr_ = true;
      this->VisitExpr(op->args[0]);
      within_condition_expr_ = false;
      for (auto i = 1; i < op->args.size(); i++) {
        this->VisitExpr(op->args[i]);
      }
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
    } else if (op->op.same_as(tl::mbarrier_wait_parity())) {
      ICHECK(args[0].as<BufferLoadNode>());
      Buffer mbar_buf = args[0].as<BufferLoadNode>()->buffer;
      auto buffer_reads =
          chain_builder_.mbar_to_buffer_reads_.find(mbar_buf.get());
      auto buffer_writes =
          chain_builder_.mbar_to_buffer_writes_.find(mbar_buf.get());
      if (buffer_reads != chain_builder_.mbar_to_buffer_reads_.end()) {
        reads_.insert(reads_.end(), buffer_reads->second.begin(),
                      buffer_reads->second.end());
      }
      if (buffer_writes != chain_builder_.mbar_to_buffer_writes_.end()) {
        writes_.insert(
            writes_.end(),
            chain_builder_.mbar_to_buffer_writes_.at(mbar_buf.get()).begin(),
            chain_builder_.mbar_to_buffer_writes_.at(mbar_buf.get()).end());
      }
257
258
    } else {
      StmtExprVisitor::VisitExpr_(op);
259
260
261
    }
  }

262
263
264
265
266
267
268
269
270
271
272
273
  void VisitStmt_(const IfThenElseNode *op) final {
    within_condition_expr_ = true;
    this->VisitExpr(op->condition);
    within_condition_expr_ = false;
    this->VisitStmt(op->then_case);
    if (op->else_case.defined()) {
      within_condition_expr_ = true;
      this->VisitStmt(op->else_case.value());
      within_condition_expr_ = false;
    }
  }

274
private:
275
  AsyncDependencyChainBuilder chain_builder_;
276
277
278
  Map<Var, Buffer> buffer_data_to_buffer_;
  Array<BufferRegion> reads_;
  Array<BufferRegion> writes_;
279
280
281
  bool is_global_read_ = false;
  bool under_buffer_store_ = false;
  bool is_global_copy_pattern_ = false;
282
  bool within_condition_expr_ = false;
283
284
};

285
class PipelinePlanner : public StmtExprMutator {
286
public:
287
288
  static Stmt Substitute(const PrimFunc &f, bool use_async_copy = true) {
    PipelinePlanner substituter(use_async_copy);
289
    for (const auto &[_, buffer] : f->buffer_map) {
290
291
292
      substituter.buffer_data_to_buffer_.Set(buffer->data, buffer);
    }
    auto target = f->GetAttr<Target>(tvm::attr::kTarget);
293
294
    ICHECK(target.defined())
        << "Pipeline_Planning: Require the target attribute";
295
296
297
298
    substituter.target_ = target.value();
    return substituter.VisitStmt(f->body);
  }

299
private:
300
  PipelinePlanner() = default;
301
  PipelinePlanner(bool use_async_copy) : use_async_copy_(use_async_copy) {}
302

303
304
305
306
  /*! \brief Information about a pipeline stage
   *
   * \param reads Array of buffer regions read by this stage
   * \param writes Array of buffer regions written by this stage
307
   * \param original_stmt_index Original position of this stage in the pipeline
308
309
310
311
   * before reordering \param order Current position of this stage in the
   * pipeline after reordering (-1 if not yet assigned) \param stage Pipeline
   * stage number this operation belongs to (-1 if not yet assigned) \param
   * copy_stage Whether this stage is a memory copy operation \param
312
313
314
315
316
317
318
319
320
321
   * last_use_stmt_index Index of the last statement (in original order) that
   * uses the results of this stage (-1 if not yet determined). This field is
   * crucial for pipeline optimization:
   * - For copy stages: indicates the index of the last statement that reads
   * from the copied data, helping determine optimal placement of copy
   * operations
   * - Used to ensure copy operations are scheduled before their consumers
   * - A value of -1 means no subsequent statement uses this stage's output
   * - This information enables better pipeline scheduling by minimizing data
   *   dependencies and maximizing parallelism
322
   */
323
324
  struct PipelineStageInfo {
    Array<BufferRegion> reads, writes;
325
    int original_stmt_index{};
326
327
    int order = -1, stage = -1;
    bool copy_stage = false;
328
329
330
331
332
333
334
335
336
337
338
    bool producer_for_copy = false;
    int last_use_stmt_index =
        -1; // Initialized to -1, indicating no consumers found yet

  public:
    bool is_first_stage() const { return copy_stage || producer_for_copy; }
    bool is_copy_stage() const { return copy_stage; }
    bool is_producer_for_copy() const { return producer_for_copy; }
    bool is_last_use_stmt_index_valid() const {
      return last_use_stmt_index != -1;
    }
339
340
  };

341
342
343
  PipelineStageInfo
  MakePipelineStageInfo(Stmt stmt, int idx,
                        AsyncDependencyChainBuilder &chain_builder) {
344
    Block block(/*iter_vars=*/{}, /*reads=*/{}, /*writes=*/{}, /*name_hint=*/"",
345
                /*body*/ std::move(stmt));
346
347
    Array<Array<BufferRegion>> access =
        GetBlockReadWriteRegion(block, buffer_data_to_buffer_);
348
349
    auto collector =
        BufferRegionCollector(buffer_data_to_buffer_, chain_builder);
350
    collector(block);
351
    PipelineStageInfo pinfo;
352
353
    pinfo.reads = std::move(collector.GetReads());
    pinfo.writes = std::move(collector.GetWrites());
354
    pinfo.original_stmt_index = idx;
355
    pinfo.copy_stage = collector.GetGlobalCopyPattern();
356
357
358
    return std::move(pinfo);
  }

359
  Stmt VisitStmt_(const ForNode *loop) final {
360
361
    auto order_anno = loop->annotations.Get("tl_pipeline_order");
    auto stage_anno = loop->annotations.Get("tl_pipeline_stage");
362
    auto num_stages_anno = loop->annotations.Get("num_stages");
363
    if (order_anno && stage_anno) {
364
365
366
      // Check if order_anno or stage_anno contains -1, which means TMA+WS is
      // enabled
      bool ws_tma_enabled = false;
367
368
      auto order_array = Downcast<Array<Integer>>(order_anno.value());
      auto stage_array = Downcast<Array<Integer>>(stage_anno.value());
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
      for (const auto &val : order_array) {
        if (val->value == -1) {
          ws_tma_enabled = true;
          break;
        }
      }
      if (!ws_tma_enabled) {
        for (const auto &val : stage_array) {
          if (val->value == -1) {
            ws_tma_enabled = true;
            break;
          }
        }
      }

      if (ws_tma_enabled) {
        return StmtExprMutator::VisitStmt_(loop);
      }

388
      Map<String, Any> annotations;
389
390
391
392
393
      for (const auto &[key, value] : loop->annotations) {
        if (key != "tl_pipeline_order") {
          annotations.Set(key, value);
        }
      }
394
      annotations.Set(tir::attr::software_pipeline_order, order_anno.value());
395
396
397
398
399
400

      for (const auto &[key, value] : loop->annotations) {
        if (key != "tl_pipeline_stage") {
          annotations.Set(key, value);
        }
      }
401
      annotations.Set(tir::attr::software_pipeline_stage, stage_anno.value());
402
      if (TargetHasAsyncCopy(target_) && use_async_copy_)
403
404
405
406
407
408
409
        annotations.Set(tir::attr::software_pipeline_async_stages,
                        Array<Integer>{0});
      auto for_node = GetRef<For>(loop);
      for_node.CopyOnWrite()->annotations = annotations;
      return for_node;
    }

410
    if (!num_stages_anno)
411
      return StmtExprMutator::VisitStmt_(loop);
412
    int num_stages = num_stages_anno->as<IntImmNode>()->value;
413
    Stmt pipeline_body_root{nullptr};
414
415
416
    if (const auto *realize = loop->body.as<BlockRealizeNode>()) {
      const auto &block = realize->block;
      for (const auto &buffer : block->alloc_buffers) {
417
418
419
        ICHECK(buffer->IsInstance<BufferNode>());
        buffer_data_to_buffer_.Set(buffer->data, buffer);
      }
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
      pipeline_body_root = block->body;
    } else {
      pipeline_body_root = loop->body;
    }
    const SeqStmtNode *pipeline_body_seq = nullptr;
    {
      Stmt current = pipeline_body_root;
      while (true) {
        if (const auto *seq_stmt = current.as<SeqStmtNode>()) {
          pipeline_body_seq = seq_stmt;
          break;
        }
        if (const auto *if_then_else = current.as<IfThenElseNode>()) {
          ICHECK(!if_then_else->else_case.defined())
              << "Pipeline_Planning: Can't handle the body of the loop because "
                 "the IfThenElse node has an else branch";
          current = if_then_else->then_case;
          continue;
        }
        if (const auto *let_stmt = current.as<LetStmtNode>()) {
          current = let_stmt->body;
          continue;
        }
443
        LOG(FATAL) << "Pipeline_Planning: Can't handle the body of the loop "
444
445
446
                   << "because it is not a SeqStmt, IfThenElse without else, "
                   << "or LetStmt wrapping them, but got "
                   << current->GetTypeKey();
447
      }
448
    }
449
450
    ICHECK(pipeline_body_seq != nullptr);

451
452
453
    CHECK(num_stages >= 1);
    CHECK(loop->kind == ForKind::kSerial);

454
    AsyncDependencyChainBuilder chain_builder(buffer_data_to_buffer_);
455
    chain_builder(pipeline_body_root);
456

457
458
    std::vector<PipelineStageInfo> pipeline_stage_infos;
    for (size_t i = 0; i < pipeline_body_seq->size(); i++) {
459
460
      auto pinfo =
          MakePipelineStageInfo(pipeline_body_seq->seq[i], i, chain_builder);
461
462
463
      pipeline_stage_infos.push_back(std::move(pinfo));
    }

464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
    // For every copy stage, mark all its dependency stages as producer_for_copy
    // Helper struct to manage copy stage dependency reads
    struct CopyStageDependencyReadsManager {
      std::vector<BufferRegion> regions;

      // Add a region if not already present (by structural equality)
      void AddUnique(const BufferRegion &region) {
        for (const BufferRegion &copy_read : regions) {
          if (region->buffer.same_as(copy_read->buffer)) {
            return;
          }
        }
        regions.push_back(region);
      }

      // Check if a region is present (by structural equality)
      bool Contains(const BufferRegion &region) const {
        for (const BufferRegion &copy_read : regions) {
          if (region->buffer.same_as(copy_read->buffer)) {
            return true;
          }
        }
        return false;
      }

      size_t Size() const { return regions.size(); }
    };

    CopyStageDependencyReadsManager copy_stage_dependency_reads_mgr;

    // Step 1. Collect Copy reads
    for (const auto &pinfo : pipeline_stage_infos) {
      if (pinfo.is_copy_stage()) {
        for (const BufferRegion &read : pinfo.reads) {
          copy_stage_dependency_reads_mgr.AddUnique(read);
        }
      }
    }

    // Step 2. find if pinfo write the copy reads, then update the
    // copy_stage_dependency_reads To prevent infinite loops, we set a maximum
    // number of iterations. In theory, the number of possible updates is
    // bounded by the number of pipeline stages, since each stage can only be
    // marked as producer_for_copy once, and each read can only be added once.
    // But for safety, we add a hard limit.
    const size_t max_iterations = (pipeline_stage_infos.size() * 4) + 16;
    size_t iter_count = 0;

512
    for (auto &pinfo : pipeline_stage_infos) {
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
      if (!pinfo.is_copy_stage()) {
        continue;
      }
      auto original_copy_stmt_index = pinfo.original_stmt_index;
      bool updated = true;
      while (updated) {
        updated = false;
        for (auto &pinfo_inner : pipeline_stage_infos) {
          if (pinfo_inner.is_copy_stage()) {
            continue;
          }
          if (pinfo_inner.original_stmt_index >= original_copy_stmt_index) {
            break;
          }

          bool should_prepare = false;
          for (const BufferRegion &write : pinfo_inner.writes) {
            if (copy_stage_dependency_reads_mgr.Contains(write)) {
              should_prepare = true;
              break;
            }
          }
          if (should_prepare && !pinfo_inner.is_producer_for_copy()) {
            pinfo_inner.producer_for_copy = true;
            updated = true;
          }
          if (should_prepare) {
            for (const BufferRegion &read : pinfo_inner.reads) {
              size_t before = copy_stage_dependency_reads_mgr.Size();
              copy_stage_dependency_reads_mgr.AddUnique(read);
              if (copy_stage_dependency_reads_mgr.Size() > before) {
                updated = true;
545
              }
546
            }
547
548
          }
        }
549
550
551
552
553
554
555
        iter_count++;
        if (iter_count > max_iterations) {
          LOG(FATAL)
              << "Pipeline planning: Exceeded maximum iterations ("
              << max_iterations << ") in copy stage dependency propagation. "
              << "This may indicate a cyclic or pathological dependency graph.";
        }
556
557
558
      }
    }

559
560
561
562
563
    // Analysis use-def chain to determine last_use_stmt_index for copy
    // operations This step is critical for pipeline optimization as it
    // identifies the index of the last statement that consumes data produced by
    // copy stages, enabling optimal placement of copy operations in the
    // pipeline schedule.
564
    for (auto &pinfo : pipeline_stage_infos) {
565
566
567
568
569
570
      // Only analyze copy stages (memory copy operations)
      if (!pinfo.is_first_stage())
        continue;

      // Check all subsequent statements to find the latest consumer
      for (int i = pinfo.original_stmt_index + 1;
571
           i < static_cast<int>(pipeline_body_seq->size()); i++) {
572
573
574

        // Check if any read operation in statement 'i' uses data written by
        // this copy stage
575
        for (const BufferRegion &read : pipeline_stage_infos[i].reads) {
576
577
          // Look for overlapping buffer regions between this stage's writes and
          // stage 'i's reads
578
579
580
581
582
          if (std::find_if(pinfo.writes.begin(), pinfo.writes.end(),
                           [&](const BufferRegion &r) {
                             return r->buffer == read->buffer &&
                                    MayConflict(r->region, read->region);
                           }) != pinfo.writes.end()) {
583
584
585
586
            // Update last_use_stmt_index to the maximum (latest) statement
            // index that uses this data This ensures we capture the final
            // consumer of the copied data
            pinfo.last_use_stmt_index = std::max(pinfo.last_use_stmt_index, i);
587
588
          }
        }
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
        // Check for write-after-write conflicts (multiple stages writing to
        // same buffer region) This is important for pipeline correctness and
        // affects last_use_stmt_index analysis
        if (pinfo.is_copy_stage()) {
          for (const BufferRegion &write : pipeline_stage_infos[i].writes) {
            if (std::find_if(pinfo.writes.begin(), pinfo.writes.end(),
                             [&](const BufferRegion &r) {
                               return r->buffer == write->buffer &&
                                      MayConflict(r->region, write->region);
                             }) != pinfo.writes.end()) {
              LOG(FATAL) << "Pipeline planning error: Multiple writes to "
                            "overlapping buffer regions detected. "
                         << "Stage " << pinfo.original_stmt_index
                         << " and stage " << i
                         << " are both writing to buffer '"
                         << write->buffer->name
                         << "' with overlapping regions. This is not supported "
                            "in pipeline planning.";
            }
608
609
610
611
612
613
614
          }
        }
      }
    }

    // Making stages and orders
    int order_idx = 0;
615
    // Stage 1. Create pipeline stages and assign order
616
    for (auto &pinfo : pipeline_stage_infos) {
617
      // Skip elements that must be in first stage:
618
619
620
621
622
      // 1. Copy stages (with active last_use_stmt_index) - these need special
      // handling
      //    because they have consumers that depend on their data
      // 2. All Producer stages for copy stages.
      if (pinfo.is_first_stage() && pinfo.is_last_use_stmt_index_valid()) {
623
        continue;
624
      }
625

626
627
628
      // Main logic stage assignment:
      // - Increment order index
      // - Assign to new stage (current num_stages)
629
630
      pinfo.order = order_idx++;
      pinfo.stage = num_stages;
631

632
633
634
      // Schedule copy stages that have this stage as their last consumer
      // This ensures copy operations are placed right before their final
      // consumer for optimal pipeline efficiency
635
      for (auto &pinfo_1 : pipeline_stage_infos) {
636
637
        if ((pinfo_1.is_first_stage() &&
             pinfo_1.last_use_stmt_index == pinfo.original_stmt_index)) {
638
          pinfo_1.order = order_idx++;
639
          pinfo_1.stage = 0; // Copy stages are typically assigned to stage 0
640
        }
641
642
643
      }
    }

644
645
646
647
648
    ICHECK(size_t(order_idx) == pipeline_stage_infos.size())
        << "The number of stages should be equal to the number of pipeline "
           "stages. "
        << "Got " << order_idx << " stages and " << pipeline_stage_infos.size()
        << " pipeline stages.";
649

650
651
    // Step 2. if all the copy is at the end of the order, we can move these
    // copy to the beginning of the order and shrink the stage offset by 1.
652
653
654
655
    int copy_stage_at_end = [&]() {
      int copy_stage_cnt = 0;
      int copy_order_min = pipeline_stage_infos.size();
      int non_copy_order_max = 0;
656
      for (auto &pinfo : pipeline_stage_infos) {
657
        if (pinfo.is_first_stage()) {
658
659
660
661
662
663
          copy_stage_cnt++;
          copy_order_min = std::min(copy_order_min, pinfo.order);
        } else {
          non_copy_order_max = std::max(non_copy_order_max, pinfo.order);
        }
      }
664
665
      if (copy_order_min > non_copy_order_max)
        return copy_stage_cnt;
666
667
668
      return -1;
    }();
    if (copy_stage_at_end > 0 && num_stages >= 2) {
669
670
671
      for (auto &pinfo : pipeline_stage_infos) { // move copy to the beginning
        pinfo.order =
            (pinfo.order + copy_stage_at_end) % pipeline_stage_infos.size();
672
        if (!pinfo.is_copy_stage() && !pinfo.is_producer_for_copy())
673
          pinfo.stage--;
674
675
676
677
      }
    }

    // Finally, make the pipeline annotation
678
    Map<String, Any> annotations;
679
    for (const auto &[key, value] : loop->annotations) {
680
681
682
683
684
685
686
687
      if (key != "num_stages") {
        annotations.Set(key, value);
      }
    }

    std::vector<Integer> orders, stages;
    orders.reserve(pipeline_stage_infos.size());
    stages.reserve(pipeline_stage_infos.size());
688
    for (auto &pinfo : pipeline_stage_infos) {
689
690
691
692
693
694
      orders.push_back(pinfo.order);
      stages.push_back(pinfo.stage);
    }

    annotations.Set(tir::attr::software_pipeline_stage, Array<Integer>(stages));
    annotations.Set(tir::attr::software_pipeline_order, Array<Integer>(orders));
695
    if (TargetHasAsyncCopy(target_) && use_async_copy_)
696
697
      annotations.Set(tir::attr::software_pipeline_async_stages,
                      Array<Integer>{0});
698
699
700
701
702

    return For(loop->loop_var, loop->min, loop->extent, loop->kind, loop->body,
               loop->thread_binding, annotations);
  }

703
704
  Stmt VisitStmt_(const BlockNode *op) final {
    for (const auto &buffer : op->alloc_buffers) {
705
706
707
      buffer_data_to_buffer_.Set(buffer->data, buffer);
    }
    Block block = Downcast<Block>(StmtExprMutator::VisitStmt_(op));
708
    for (const auto &buffer : op->alloc_buffers) {
709
710
711
712
713
714
715
      buffer_data_to_buffer_.erase(buffer->data);
    }
    return std::move(block);
  }

  Map<Var, Buffer> buffer_data_to_buffer_;
  Target target_;
716
  bool use_async_copy_{};
717
718
719
720
};

tvm::transform::Pass PipelinePlanning() {
  using namespace tir::transform;
721
  auto pass_func = [=](PrimFunc f, const IRModule &m, PassContext ctx) {
722
723
    bool use_async_copy =
        ctx->GetConfig<Bool>("tir.use_async_copy", Bool(true)).value();
724
    PrimFuncNode *fptr = f.CopyOnWrite();
725
    fptr->body = PipelinePlanner::Substitute(f, use_async_copy);
726
727
728
729
730
    return f;
  };
  return CreatePrimFuncPass(pass_func, 0, "tl.PipelinePlanning", {});
}

731
732
733
734
TVM_FFI_STATIC_INIT_BLOCK({
  namespace refl = tvm::ffi::reflection;
  refl::GlobalDef().def("tl.transform.PipelinePlanning", PipelinePlanning);
});
735

736
737
} // namespace tl
} // namespace tvm