pipeline_planning.cc 26.6 KB
Newer Older
1
#include <tvm/arith/analyzer.h>
2
#include <tvm/ffi/reflection/registry.h>
3
#include <tvm/tir/analysis.h>
4
#include <tvm/tir/builtin.h>
5
6
7
#include <tvm/tir/stmt_functor.h>
#include <tvm/tir/transform.h>

8
#include "../op/builtin.h"
9
10
#include <utility>

11
#include "../target/utils.h"
12
#include "tvm/ir/expr.h"
13
14
15
16
17
18
19
20
21
22
23
24

namespace tvm {
namespace tl {

using namespace tir;

/*!
 * \brief Check whether two regions have intersections.
 * \param region1 The first region.
 * \param region2 The second region.
 * \return Whether region1 and region2 have intersections.
 */
25
bool MayConflict(const Region &region1, const Region &region2) {
26
27
28
29
30
31
32
33
34
35
36
37
38
  ICHECK(region1.size() == region2.size());
  for (size_t i = 0; i < region1.size(); i++) {
    Range dim1 = region1[i];
    Range dim2 = region2[i];
    auto int_set1 = arith::IntSet::FromRange(dim1);
    auto int_set2 = arith::IntSet::FromRange(dim2);
    if (arith::Intersect({int_set1, int_set2}).IsNothing()) {
      return false;
    }
  }
  return true;
}

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
class TmemLoadCollector : public StmtExprVisitor {
public:
  TmemLoadCollector() {}

  Buffer result;

private:
  void VisitExpr_(const BufferLoadNode *op) {
    Buffer buf = op->buffer;
    if (buf->data->type_annotation.as<PointerTypeNode>()->storage_scope ==
        "shared") {
      // We only care about shared.tmem buffers
      ICHECK(!result.defined())
          << "TmemLoadCollector: More than one shared buffer visited";
      result = buf;
    }
  }
};

/*!
 * \brief Build the dependency chain between async operations and their
 *        corresponding buffers & synchronizations.
 *
 *        Example:
 *        If we encounter the following pattern:
 *
 *        tcgen5mma_gemm_ts(..., mbar, ...)
 *        mbarrier_wait_parity(mbar)
 *
 *        The builder will link the mbarrier to the buffers used in the
 * TCGEN5MMA
 */
class AsyncDependencyChainBuilder : public StmtExprVisitor {
public:
  AsyncDependencyChainBuilder(Map<Var, Buffer> buffer_data_to_buffer)
      : buffer_data_to_buffer_(buffer_data_to_buffer) {}

  std::unordered_map<const BufferNode *, Array<BufferRegion>>
      mbar_to_buffer_reads_;

  std::unordered_map<const BufferNode *, Array<BufferRegion>>
      mbar_to_buffer_writes_;

private:
  Map<Var, Buffer> buffer_data_to_buffer_;

  void VisitExpr_(const CallNode *op) final {
    auto args = op->args;
    if (op->op.same_as(builtin::call_extern())) {
      std::string func_name_with_template = args[0].as<StringImmNode>()->value;
      std::size_t le_pos = func_name_with_template.find_first_of('<');
      std::string func_name = le_pos == std::string::npos
                                  ? func_name_with_template
                                  : func_name_with_template.substr(0, le_pos);
93
94
95
      // TODO(lei): refactor to use identical ops.
      if (func_name == "tl::tcgen5mma_gemm_ts" ||
          func_name == "tl::tcgen5mma_gemm_ss") {
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
        // TCGEN5MMA
        auto get_buf_from_access_ptr_call =
            [&](const PrimExpr &expr) -> Buffer {
          auto call = expr.as<CallNode>();
          ICHECK(call);
          ICHECK(call->op.same_as(builtin::tvm_access_ptr()));
          auto var = call->args[1].as<VarNode>();
          ICHECK(var);
          auto it = buffer_data_to_buffer_.find(GetRef<Var>(var));
          ICHECK(it != buffer_data_to_buffer_.end());
          return (*it).second;
        };
        Buffer a_buf = get_buf_from_access_ptr_call(args[1]);
        Buffer b_buf = get_buf_from_access_ptr_call(args[2]);
        Buffer mbar_buf = get_buf_from_access_ptr_call(args[4]);

        TmemLoadCollector tmem_collector;
        tmem_collector(args[3]);
        ICHECK(tmem_collector.result.defined())
            << "TmemLoadCollector: No tmem buffer load found in the TCGEN5MMA "
               "call";
        Buffer c_buf = tmem_collector.result;

        PrimExpr clear_accum = args[5];
        mbar_to_buffer_reads_[mbar_buf.get()].push_back(
            BufferRegion::FullRegion(a_buf));
        mbar_to_buffer_reads_[mbar_buf.get()].push_back(
            BufferRegion::FullRegion(b_buf));
        mbar_to_buffer_writes_[mbar_buf.get()].push_back(
            BufferRegion::FullRegion(c_buf));
        auto analyzer = std::make_shared<arith::Analyzer>();
        if (!analyzer->CanProveEqual(clear_accum, Bool(true))) {
          mbar_to_buffer_reads_[mbar_buf.get()].push_back(
              BufferRegion::FullRegion(c_buf));
        }
      }
      // TODO (lei) Link wgmma to buffers and tl.wait_wgmma
    } else if (op->op.same_as(tir::builtin::if_then_else())) {
      const PrimExpr &then_expr = args[1];
      const PrimExpr &else_expr = args[2];
      this->VisitExpr(then_expr);
      this->VisitExpr(else_expr);
    } else {
      StmtExprVisitor::VisitExpr_(op);
    }
  }
};

144
145
146
147
148
149
/*!
 * \brief Detect if a statement follows the global memory copy pattern:
 *        1. Contains exactly one buffer store operation
 *        2. Source buffer must be in global memory scope
 *        3. Destination buffer must be in local or shared memory scope
 */
150
class BufferRegionCollector : public StmtExprVisitor {
151
public:
152
153
154
155
  BufferRegionCollector(Map<Var, Buffer> buffer_data_to_buffer,
                        const AsyncDependencyChainBuilder &chain_builder)
      : buffer_data_to_buffer_(buffer_data_to_buffer),
        chain_builder_(chain_builder) {}
156
157
158
159
160
161
162

  Array<BufferRegion> GetReads() const { return reads_; }

  Array<BufferRegion> GetWrites() const { return writes_; }

  bool GetGlobalCopyPattern() const { return is_global_copy_pattern_; }

163
164
165
private:
  void VisitStmt_(const BufferStoreNode *op) final {
    Buffer store_buffer = op->buffer;
166
167
168
169
170
171
172
173
174
    Array<PrimExpr> indices = op->indices;
    // convert indices to region
    Array<Range> region;
    for (const auto &index : indices) {
      region.push_back(Range::FromMinExtent(index, 1));
    }
    auto store_region = BufferRegion(store_buffer, region);
    writes_.push_back(store_region);

175
176
177
    is_global_read_ = false;
    this->VisitExpr(op->value);
    if (is_global_read_ && (store_buffer.scope() == "shared" ||
178
                            store_buffer.scope() == "shared.dyn")) {
179
180
181
182
183
184
      is_global_copy_pattern_ = true;
    }
    is_global_read_ = false;
  }

  void VisitExpr_(const BufferLoadNode *op) final {
185
186
187
188
189
190
191
192
193
194
    auto load_buffer = op->buffer;
    Array<PrimExpr> indices = op->indices;
    // convert indices to region
    Array<Range> region;
    for (const auto &index : indices) {
      region.push_back(Range::FromMinExtent(index, 1));
    }
    auto load_region = BufferRegion(load_buffer, region);
    reads_.push_back(load_region);

195
196
197
198
199
    if (op->buffer.scope() == "global" && !within_condition_expr_) {
      // skip condition expr of if_then_else node
      // shared[i] = T.if_then_else(global[i] < n, register_a[i], register_b[i])
      // is not a global read shared[i] = T.if_then_else(global[i] < n,
      // global_a[i], global_b[i]) is a global read
200
201
202
203
204
205
      is_global_read_ = true;
    }
  }

  void VisitExpr_(const CallNode *op) final {
    auto args = op->args;
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
    if (op->op.same_as(builtin::address_of())) {
      const BufferLoad load = Downcast<BufferLoad>(op->args[0]);
      const BufferRegion buffer_region = BufferRegion::FullRegion(load->buffer);
      // because we only care about the buffer itself instead of indices
      reads_.push_back(buffer_region);
    } else if (op->op.same_as(builtin::tvm_access_ptr())) {
      const VarNode *buffer_var = op->args[1].as<VarNode>();
      ICHECK(buffer_var);
      auto it = buffer_data_to_buffer_.find(GetRef<Var>(buffer_var));
      if (it != buffer_data_to_buffer_.end()) {
        const Buffer &buffer = (*it).second;
        const BufferRegion buffer_region = BufferRegion::FullRegion(buffer);
        // because we only care about the buffer itself instead of indices
        reads_.push_back(buffer_region);
      }
221
222
223
224
225
226
227
    } else if (op->op.same_as(builtin::if_then_else())) {
      within_condition_expr_ = true;
      this->VisitExpr(op->args[0]);
      within_condition_expr_ = false;
      for (auto i = 1; i < op->args.size(); i++) {
        this->VisitExpr(op->args[i]);
      }
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
    } else if (op->op.same_as(tl::mbarrier_wait_parity())) {
      ICHECK(args[0].as<BufferLoadNode>());
      Buffer mbar_buf = args[0].as<BufferLoadNode>()->buffer;
      auto buffer_reads =
          chain_builder_.mbar_to_buffer_reads_.find(mbar_buf.get());
      auto buffer_writes =
          chain_builder_.mbar_to_buffer_writes_.find(mbar_buf.get());
      if (buffer_reads != chain_builder_.mbar_to_buffer_reads_.end()) {
        reads_.insert(reads_.end(), buffer_reads->second.begin(),
                      buffer_reads->second.end());
      }
      if (buffer_writes != chain_builder_.mbar_to_buffer_writes_.end()) {
        writes_.insert(
            writes_.end(),
            chain_builder_.mbar_to_buffer_writes_.at(mbar_buf.get()).begin(),
            chain_builder_.mbar_to_buffer_writes_.at(mbar_buf.get()).end());
      }
245
246
    } else {
      StmtExprVisitor::VisitExpr_(op);
247
248
249
    }
  }

250
251
252
253
254
255
256
257
258
259
260
261
  void VisitStmt_(const IfThenElseNode *op) final {
    within_condition_expr_ = true;
    this->VisitExpr(op->condition);
    within_condition_expr_ = false;
    this->VisitStmt(op->then_case);
    if (op->else_case.defined()) {
      within_condition_expr_ = true;
      this->VisitStmt(op->else_case.value());
      within_condition_expr_ = false;
    }
  }

262
private:
263
  AsyncDependencyChainBuilder chain_builder_;
264
265
266
  Map<Var, Buffer> buffer_data_to_buffer_;
  Array<BufferRegion> reads_;
  Array<BufferRegion> writes_;
267
268
269
  bool is_global_read_ = false;
  bool under_buffer_store_ = false;
  bool is_global_copy_pattern_ = false;
270
  bool within_condition_expr_ = false;
271
272
};

273
class PipelinePlanner : public StmtExprMutator {
274
public:
275
276
  static Stmt Substitute(const PrimFunc &f, bool use_async_copy = true) {
    PipelinePlanner substituter(use_async_copy);
277
    for (const auto &[_, buffer] : f->buffer_map) {
278
279
280
      substituter.buffer_data_to_buffer_.Set(buffer->data, buffer);
    }
    auto target = f->GetAttr<Target>(tvm::attr::kTarget);
281
282
    ICHECK(target.defined())
        << "Pipeline_Planning: Require the target attribute";
283
284
285
286
    substituter.target_ = target.value();
    return substituter.VisitStmt(f->body);
  }

287
private:
288
  PipelinePlanner() = default;
289
  PipelinePlanner(bool use_async_copy) : use_async_copy_(use_async_copy) {}
290

291
292
293
294
  /*! \brief Information about a pipeline stage
   *
   * \param reads Array of buffer regions read by this stage
   * \param writes Array of buffer regions written by this stage
295
   * \param original_stmt_index Original position of this stage in the pipeline
296
297
298
299
   * before reordering \param order Current position of this stage in the
   * pipeline after reordering (-1 if not yet assigned) \param stage Pipeline
   * stage number this operation belongs to (-1 if not yet assigned) \param
   * copy_stage Whether this stage is a memory copy operation \param
300
301
302
303
304
305
306
307
308
309
   * last_use_stmt_index Index of the last statement (in original order) that
   * uses the results of this stage (-1 if not yet determined). This field is
   * crucial for pipeline optimization:
   * - For copy stages: indicates the index of the last statement that reads
   * from the copied data, helping determine optimal placement of copy
   * operations
   * - Used to ensure copy operations are scheduled before their consumers
   * - A value of -1 means no subsequent statement uses this stage's output
   * - This information enables better pipeline scheduling by minimizing data
   *   dependencies and maximizing parallelism
310
   */
311
312
  struct PipelineStageInfo {
    Array<BufferRegion> reads, writes;
313
    int original_stmt_index{};
314
315
    int order = -1, stage = -1;
    bool copy_stage = false;
316
317
318
319
320
321
322
323
324
325
326
    bool producer_for_copy = false;
    int last_use_stmt_index =
        -1; // Initialized to -1, indicating no consumers found yet

  public:
    bool is_first_stage() const { return copy_stage || producer_for_copy; }
    bool is_copy_stage() const { return copy_stage; }
    bool is_producer_for_copy() const { return producer_for_copy; }
    bool is_last_use_stmt_index_valid() const {
      return last_use_stmt_index != -1;
    }
327
328
  };

329
330
331
  PipelineStageInfo
  MakePipelineStageInfo(Stmt stmt, int idx,
                        AsyncDependencyChainBuilder &chain_builder) {
332
    Block block(/*iter_vars=*/{}, /*reads=*/{}, /*writes=*/{}, /*name_hint=*/"",
333
                /*body*/ std::move(stmt));
334
335
    Array<Array<BufferRegion>> access =
        GetBlockReadWriteRegion(block, buffer_data_to_buffer_);
336
337
    auto collector =
        BufferRegionCollector(buffer_data_to_buffer_, chain_builder);
338
    collector(block);
339
    PipelineStageInfo pinfo;
340
341
    pinfo.reads = std::move(collector.GetReads());
    pinfo.writes = std::move(collector.GetWrites());
342
    pinfo.original_stmt_index = idx;
343
    pinfo.copy_stage = collector.GetGlobalCopyPattern();
344
345
346
    return std::move(pinfo);
  }

347
  Stmt VisitStmt_(const ForNode *loop) final {
348
349
    auto order_anno = loop->annotations.Get("tl_pipeline_order");
    auto stage_anno = loop->annotations.Get("tl_pipeline_stage");
350
    auto num_stages_anno = loop->annotations.Get("num_stages");
351
    if (order_anno && stage_anno) {
352
353
354
      // Check if order_anno or stage_anno contains -1, which means TMA+WS is
      // enabled
      bool ws_tma_enabled = false;
355
356
      auto order_array = Downcast<Array<Integer>>(order_anno.value());
      auto stage_array = Downcast<Array<Integer>>(stage_anno.value());
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
      for (const auto &val : order_array) {
        if (val->value == -1) {
          ws_tma_enabled = true;
          break;
        }
      }
      if (!ws_tma_enabled) {
        for (const auto &val : stage_array) {
          if (val->value == -1) {
            ws_tma_enabled = true;
            break;
          }
        }
      }

      if (ws_tma_enabled) {
        return StmtExprMutator::VisitStmt_(loop);
      }

376
      Map<String, Any> annotations;
377
378
379
380
381
      for (const auto &[key, value] : loop->annotations) {
        if (key != "tl_pipeline_order") {
          annotations.Set(key, value);
        }
      }
382
      annotations.Set(tir::attr::software_pipeline_order, order_anno.value());
383
384
385
386
387
388

      for (const auto &[key, value] : loop->annotations) {
        if (key != "tl_pipeline_stage") {
          annotations.Set(key, value);
        }
      }
389
      annotations.Set(tir::attr::software_pipeline_stage, stage_anno.value());
390
      if (TargetHasAsyncCopy(target_) && use_async_copy_)
391
392
393
394
395
396
397
        annotations.Set(tir::attr::software_pipeline_async_stages,
                        Array<Integer>{0});
      auto for_node = GetRef<For>(loop);
      for_node.CopyOnWrite()->annotations = annotations;
      return for_node;
    }

398
    if (!num_stages_anno)
399
      return StmtExprMutator::VisitStmt_(loop);
400
    int num_stages = num_stages_anno->as<IntImmNode>()->value;
401
    Stmt pipeline_body{nullptr};
402
403
404
    if (const auto *realize = loop->body.as<BlockRealizeNode>()) {
      const auto &block = realize->block;
      for (const auto &buffer : block->alloc_buffers) {
405
406
407
        ICHECK(buffer->IsInstance<BufferNode>());
        buffer_data_to_buffer_.Set(buffer->data, buffer);
      }
408
409
410
411
412
413
414
415
416
417
418
419
      if (const auto *seq_stmt = block->body.as<SeqStmtNode>()) {
        pipeline_body = block->body;
      } else if (const auto *if_then_else = block->body.as<IfThenElseNode>()) {
        // should assert else case is nullptr
        ICHECK(!if_then_else->else_case.defined())
            << "Pipeline_Planning: Can't handle the body of the loop because "
               "it is not a SeqStmt";
        pipeline_body = if_then_else->then_case;
      } else {
        LOG(FATAL) << "Pipeline_Planning: Can't handle the body of the loop "
                      "because it is not a SeqStmt or IfThenElse";
      }
420
421
422
    } else {
      pipeline_body = loop->body;
    }
423
    const SeqStmtNode *pipeline_body_seq = pipeline_body.as<SeqStmtNode>();
424
425
426
427
    CHECK(pipeline_body_seq)
        << "ValueError: The body of the software pipeline "
           "should be SeqStmt, got "
        << pipeline_body->GetTypeKey() << " " << pipeline_body;
428
429
430
    CHECK(num_stages >= 1);
    CHECK(loop->kind == ForKind::kSerial);

431
432
433
    AsyncDependencyChainBuilder chain_builder(buffer_data_to_buffer_);
    chain_builder(pipeline_body);

434
435
    std::vector<PipelineStageInfo> pipeline_stage_infos;
    for (size_t i = 0; i < pipeline_body_seq->size(); i++) {
436
437
      auto pinfo =
          MakePipelineStageInfo(pipeline_body_seq->seq[i], i, chain_builder);
438
439
440
      pipeline_stage_infos.push_back(std::move(pinfo));
    }

441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
    // For every copy stage, mark all its dependency stages as producer_for_copy
    // Helper struct to manage copy stage dependency reads
    struct CopyStageDependencyReadsManager {
      std::vector<BufferRegion> regions;

      // Add a region if not already present (by structural equality)
      void AddUnique(const BufferRegion &region) {
        for (const BufferRegion &copy_read : regions) {
          if (region->buffer.same_as(copy_read->buffer)) {
            return;
          }
        }
        regions.push_back(region);
      }

      // Check if a region is present (by structural equality)
      bool Contains(const BufferRegion &region) const {
        for (const BufferRegion &copy_read : regions) {
          if (region->buffer.same_as(copy_read->buffer)) {
            return true;
          }
        }
        return false;
      }

      size_t Size() const { return regions.size(); }
    };

    CopyStageDependencyReadsManager copy_stage_dependency_reads_mgr;

    // Step 1. Collect Copy reads
    for (const auto &pinfo : pipeline_stage_infos) {
      if (pinfo.is_copy_stage()) {
        for (const BufferRegion &read : pinfo.reads) {
          copy_stage_dependency_reads_mgr.AddUnique(read);
        }
      }
    }

    // Step 2. find if pinfo write the copy reads, then update the
    // copy_stage_dependency_reads To prevent infinite loops, we set a maximum
    // number of iterations. In theory, the number of possible updates is
    // bounded by the number of pipeline stages, since each stage can only be
    // marked as producer_for_copy once, and each read can only be added once.
    // But for safety, we add a hard limit.
    const size_t max_iterations = (pipeline_stage_infos.size() * 4) + 16;
    size_t iter_count = 0;

489
    for (auto &pinfo : pipeline_stage_infos) {
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
      if (!pinfo.is_copy_stage()) {
        continue;
      }
      auto original_copy_stmt_index = pinfo.original_stmt_index;
      bool updated = true;
      while (updated) {
        updated = false;
        for (auto &pinfo_inner : pipeline_stage_infos) {
          if (pinfo_inner.is_copy_stage()) {
            continue;
          }
          if (pinfo_inner.original_stmt_index >= original_copy_stmt_index) {
            break;
          }

          bool should_prepare = false;
          for (const BufferRegion &write : pinfo_inner.writes) {
            if (copy_stage_dependency_reads_mgr.Contains(write)) {
              should_prepare = true;
              break;
            }
          }
          if (should_prepare && !pinfo_inner.is_producer_for_copy()) {
            pinfo_inner.producer_for_copy = true;
            updated = true;
          }
          if (should_prepare) {
            for (const BufferRegion &read : pinfo_inner.reads) {
              size_t before = copy_stage_dependency_reads_mgr.Size();
              copy_stage_dependency_reads_mgr.AddUnique(read);
              if (copy_stage_dependency_reads_mgr.Size() > before) {
                updated = true;
522
              }
523
            }
524
525
          }
        }
526
527
528
529
530
531
532
        iter_count++;
        if (iter_count > max_iterations) {
          LOG(FATAL)
              << "Pipeline planning: Exceeded maximum iterations ("
              << max_iterations << ") in copy stage dependency propagation. "
              << "This may indicate a cyclic or pathological dependency graph.";
        }
533
534
535
      }
    }

536
537
538
539
540
    // Analysis use-def chain to determine last_use_stmt_index for copy
    // operations This step is critical for pipeline optimization as it
    // identifies the index of the last statement that consumes data produced by
    // copy stages, enabling optimal placement of copy operations in the
    // pipeline schedule.
541
    for (auto &pinfo : pipeline_stage_infos) {
542
543
544
545
546
547
      // Only analyze copy stages (memory copy operations)
      if (!pinfo.is_first_stage())
        continue;

      // Check all subsequent statements to find the latest consumer
      for (int i = pinfo.original_stmt_index + 1;
548
           i < static_cast<int>(pipeline_body_seq->size()); i++) {
549
550
551

        // Check if any read operation in statement 'i' uses data written by
        // this copy stage
552
        for (const BufferRegion &read : pipeline_stage_infos[i].reads) {
553
554
          // Look for overlapping buffer regions between this stage's writes and
          // stage 'i's reads
555
556
557
558
559
          if (std::find_if(pinfo.writes.begin(), pinfo.writes.end(),
                           [&](const BufferRegion &r) {
                             return r->buffer == read->buffer &&
                                    MayConflict(r->region, read->region);
                           }) != pinfo.writes.end()) {
560
561
562
563
            // Update last_use_stmt_index to the maximum (latest) statement
            // index that uses this data This ensures we capture the final
            // consumer of the copied data
            pinfo.last_use_stmt_index = std::max(pinfo.last_use_stmt_index, i);
564
565
          }
        }
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
        // Check for write-after-write conflicts (multiple stages writing to
        // same buffer region) This is important for pipeline correctness and
        // affects last_use_stmt_index analysis
        if (pinfo.is_copy_stage()) {
          for (const BufferRegion &write : pipeline_stage_infos[i].writes) {
            if (std::find_if(pinfo.writes.begin(), pinfo.writes.end(),
                             [&](const BufferRegion &r) {
                               return r->buffer == write->buffer &&
                                      MayConflict(r->region, write->region);
                             }) != pinfo.writes.end()) {
              LOG(FATAL) << "Pipeline planning error: Multiple writes to "
                            "overlapping buffer regions detected. "
                         << "Stage " << pinfo.original_stmt_index
                         << " and stage " << i
                         << " are both writing to buffer '"
                         << write->buffer->name
                         << "' with overlapping regions. This is not supported "
                            "in pipeline planning.";
            }
585
586
587
588
589
590
591
          }
        }
      }
    }

    // Making stages and orders
    int order_idx = 0;
592
    // Stage 1. Create pipeline stages and assign order
593
    for (auto &pinfo : pipeline_stage_infos) {
594
      // Skip elements that must be in first stage:
595
596
597
598
599
      // 1. Copy stages (with active last_use_stmt_index) - these need special
      // handling
      //    because they have consumers that depend on their data
      // 2. All Producer stages for copy stages.
      if (pinfo.is_first_stage() && pinfo.is_last_use_stmt_index_valid()) {
600
        continue;
601
      }
602

603
604
605
      // Main logic stage assignment:
      // - Increment order index
      // - Assign to new stage (current num_stages)
606
607
      pinfo.order = order_idx++;
      pinfo.stage = num_stages;
608

609
610
611
      // Schedule copy stages that have this stage as their last consumer
      // This ensures copy operations are placed right before their final
      // consumer for optimal pipeline efficiency
612
      for (auto &pinfo_1 : pipeline_stage_infos) {
613
614
        if ((pinfo_1.is_first_stage() &&
             pinfo_1.last_use_stmt_index == pinfo.original_stmt_index)) {
615
          pinfo_1.order = order_idx++;
616
          pinfo_1.stage = 0; // Copy stages are typically assigned to stage 0
617
        }
618
619
620
      }
    }

621
622
623
624
625
    ICHECK(size_t(order_idx) == pipeline_stage_infos.size())
        << "The number of stages should be equal to the number of pipeline "
           "stages. "
        << "Got " << order_idx << " stages and " << pipeline_stage_infos.size()
        << " pipeline stages.";
626

627
628
    // Step 2. if all the copy is at the end of the order, we can move these
    // copy to the beginning of the order and shrink the stage offset by 1.
629
630
631
632
    int copy_stage_at_end = [&]() {
      int copy_stage_cnt = 0;
      int copy_order_min = pipeline_stage_infos.size();
      int non_copy_order_max = 0;
633
      for (auto &pinfo : pipeline_stage_infos) {
634
        if (pinfo.is_first_stage()) {
635
636
637
638
639
640
          copy_stage_cnt++;
          copy_order_min = std::min(copy_order_min, pinfo.order);
        } else {
          non_copy_order_max = std::max(non_copy_order_max, pinfo.order);
        }
      }
641
642
      if (copy_order_min > non_copy_order_max)
        return copy_stage_cnt;
643
644
645
      return -1;
    }();
    if (copy_stage_at_end > 0 && num_stages >= 2) {
646
647
648
      for (auto &pinfo : pipeline_stage_infos) { // move copy to the beginning
        pinfo.order =
            (pinfo.order + copy_stage_at_end) % pipeline_stage_infos.size();
649
        if (!pinfo.is_copy_stage() && !pinfo.is_producer_for_copy())
650
          pinfo.stage--;
651
652
653
654
      }
    }

    // Finally, make the pipeline annotation
655
    Map<String, Any> annotations;
656
    for (const auto &[key, value] : loop->annotations) {
657
658
659
660
661
662
663
664
      if (key != "num_stages") {
        annotations.Set(key, value);
      }
    }

    std::vector<Integer> orders, stages;
    orders.reserve(pipeline_stage_infos.size());
    stages.reserve(pipeline_stage_infos.size());
665
    for (auto &pinfo : pipeline_stage_infos) {
666
667
668
669
670
671
      orders.push_back(pinfo.order);
      stages.push_back(pinfo.stage);
    }

    annotations.Set(tir::attr::software_pipeline_stage, Array<Integer>(stages));
    annotations.Set(tir::attr::software_pipeline_order, Array<Integer>(orders));
672
    if (TargetHasAsyncCopy(target_) && use_async_copy_)
673
674
      annotations.Set(tir::attr::software_pipeline_async_stages,
                      Array<Integer>{0});
675
676
677
678
679

    return For(loop->loop_var, loop->min, loop->extent, loop->kind, loop->body,
               loop->thread_binding, annotations);
  }

680
681
  Stmt VisitStmt_(const BlockNode *op) final {
    for (const auto &buffer : op->alloc_buffers) {
682
683
684
      buffer_data_to_buffer_.Set(buffer->data, buffer);
    }
    Block block = Downcast<Block>(StmtExprMutator::VisitStmt_(op));
685
    for (const auto &buffer : op->alloc_buffers) {
686
687
688
689
690
691
692
      buffer_data_to_buffer_.erase(buffer->data);
    }
    return std::move(block);
  }

  Map<Var, Buffer> buffer_data_to_buffer_;
  Target target_;
693
  bool use_async_copy_{};
694
695
696
697
};

tvm::transform::Pass PipelinePlanning() {
  using namespace tir::transform;
698
  auto pass_func = [=](PrimFunc f, const IRModule &m, PassContext ctx) {
699
700
    bool use_async_copy =
        ctx->GetConfig<Bool>("tir.use_async_copy", Bool(true)).value();
701
    PrimFuncNode *fptr = f.CopyOnWrite();
702
    fptr->body = PipelinePlanner::Substitute(f, use_async_copy);
703
704
705
706
707
    return f;
  };
  return CreatePrimFuncPass(pass_func, 0, "tl.PipelinePlanning", {});
}

708
709
710
711
TVM_FFI_STATIC_INIT_BLOCK({
  namespace refl = tvm::ffi::reflection;
  refl::GlobalDef().def("tl.transform.PipelinePlanning", PipelinePlanning);
});
712

713
714
} // namespace tl
} // namespace tvm