codegen_hip.cc 43 KB
Newer Older
1
2
3
4
5
6
/*!
 * \file target/codegen.cc
 */

#include "codegen_hip.h"
#include <tvm/arith/analyzer.h>
7
#include <tvm/ffi/function.h>
8
#include <tvm/tir/index_map.h>
9
10
11
12
13
14
15
16
17
18
19
20
21
#include <tvm/tir/op.h>

#include <cmath>
#include <string>
#include <utility>
#include <vector>

#include "../op/builtin.h"
#include "target/source/ptx.h"

namespace tvm {
namespace codegen {

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
static std::string GetFP8Type(DataType type) {
  std::stringstream stream;
  int32_t lanes = type.lanes();
  std::string vec;
  if (type.is_scalar()) {
    vec = "";
  } else if (lanes == 2) {
    vec = "_2";
  } else if (lanes == 4) {
    vec = "_4";
  } else if (lanes == 8) {
    vec = "_8";
  } else if (lanes == 16) {
    vec = "_16";
  } else {
    LOG(FATAL) << "Only support scalar and vector types of width (2, 4, 8, 16) "
                  "for FP8";
  }
  if (type.code() == DataType::kFloat8_e4m3fn) {
    stream << "fp8_e4" << vec << "_t";
  } else if (type.code() == DataType::kFloat8_e4m3fnuz) {
    stream << "fp8_e4" << vec << "_t";
alex_xiao's avatar
alex_xiao committed
44
45
46
47
  } else if (type.code() == DataType::kFloat8_e4m3) {
    stream << "fp8_e4" << vec << "_t";
  } else if (type.code() == DataType::kFloat8_e4m3b11fnuz) {
    stream << "fp8_e4" << vec << "_t";
48
49
  } else if (type.code() == DataType::kFloat8_e5m2) {
    stream << "fp8_e5" << vec << "_t";
alex_xiao's avatar
alex_xiao committed
50
51
52
53
  } else if (type.code() == DataType::kFloat8_e5m2fnuz) {
    stream << "fp8_e5" << vec << "_t";
  } else if (type.code() == DataType::kFloat8_e8m0fnu) {
    stream << "fp8_e8" << vec << "_t";
54
  } else {
alex_xiao's avatar
alex_xiao committed
55
    LOG(FATAL) << "Unsupported FP8 type in HIP codegen: " << type;
56
57
58
59
  }
  return stream.str();
}

60
61
62
63
64
/*!
 * \brief Replace patterns with replacement strings.
 * \note should use std::format instead when codebase is ported to C++20.
 */
class Replacer {
65
66
67
public:
  void register_rule(const std::string &pattern,
                     const std::string &replacement) {
68
69
70
    _rules.emplace_back(pattern, replacement);
  }
  std::string rewrite(std::string str) {
71
    for (auto &&rule : _rules) {
72
73
74
75
76
77
78
79
80
81
82
83
84
      auto [pattern, replacement] = rule;
      size_t len = pattern.size();
      size_t new_len = replacement.size();
      size_t pos = str.find(pattern);
      while (pos != std::string::npos) {
        str = str.replace(pos, len, replacement);
        pos = str.find(pattern, pos + new_len);
      }
    }
    return str;
  }
  void empty_rules() { _rules.clear(); }

85
private:
86
87
88
89
90
  std::vector<std::pair<std::string, std::string>> _rules;
};

CodeGenTileLangHIP::CodeGenTileLangHIP() { restrict_keyword_ = "__restrict__"; }

91
92
93
void CodeGenTileLangHIP::PrintFuncPrefix(std::ostream &os) {
  os << "extern \"C\" __global__ ";
}
94
95

class LaunchConfigExtractor : public tir::StmtVisitor {
96
97
private:
  void VisitStmt_(const AttrStmtNode *op) final {
98
99
    if (op->attr_key == tir::attr::thread_extent) {
      IterVar iv = Downcast<IterVar>(op->node);
100
101
      if (iv->var->name_hint == "threadIdx.x" ||
          iv->thread_tag == "threadIdx.x") {
102
        threadIdx_x_ext = op->value;
103
104
      } else if (iv->var->name_hint == "threadIdx.y" ||
                 iv->thread_tag == "threadIdx.y") {
105
        threadIdx_y_ext = op->value;
106
107
      } else if (iv->var->name_hint == "threadIdx.z" ||
                 iv->thread_tag == "threadIdx.z") {
108
109
110
111
112
113
        threadIdx_z_ext = op->value;
      }
    }
    StmtVisitor::VisitStmt_(op);
  }

114
public:
115
116
117
118
119
  PrimExpr threadIdx_x_ext = Integer(1);
  PrimExpr threadIdx_y_ext = Integer(1);
  PrimExpr threadIdx_z_ext = Integer(1);
};

120
void CodeGenTileLangHIP::PrintExtraAttrs(const PrimFunc &f, std::ostream &os) {
121
122
123
  LaunchConfigExtractor extractor;
  extractor(f->body);
  arith::Analyzer analyzer;
124
125
126
127
128
  PrimExpr threadIdx_ext =
      analyzer.Simplify(extractor.threadIdx_x_ext * extractor.threadIdx_y_ext *
                        extractor.threadIdx_z_ext);
  if (const IntImmNode *const threadIdx_ext_int =
          threadIdx_ext.as<IntImmNode>()) {
129
    if (threadIdx_ext_int->value == 1) {
130
131
      // unable to extract the number of threads per block, hence directly
      // return
132
133
134
135
136
137
138
139
140
141
142
143
      return;
    }
    stream << " __launch_bounds__(" << threadIdx_ext_int->value << ")";
  }
}

std::string CodeGenTileLangHIP::Finish() {
  // hip must need a header file.
  decl_stream << "#include <hip/hip_runtime.h>\n";
  if (need_mma_h_) {
    decl_stream << "#include <mma.h>\n";
  }
144
145
146
147
148

  if (enable_fp8_) {
    decl_stream << "#include <tl_templates/hip/hip_fp8.h>\n";
  }

149
150
151
152
153
  decl_stream << "#include <tl_templates/hip/gemm.h>\n";
  decl_stream << "#include <tl_templates/hip/copy.h>\n";
  decl_stream << "#include <tl_templates/hip/reduce.h>\n";
  decl_stream << "#include <tl_templates/hip/ldsm.h>\n";
  decl_stream << "#include <tl_templates/hip/threadblock_swizzle.h>\n";
154
  decl_stream << "#include <tl_templates/hip/debug.h>\n";
155
156
157
158
  decl_stream << "\n";
  return CodeGenC::Finish();
}

159
void CodeGenTileLangHIP::VisitStmt_(const tir::ForNode *op) {
160
161
162
163
  if (op->kind == tir::ForKind::kUnrolled) {
    PrintIndent();
    stream << "#pragma unroll\n";
  }
164
165
  std::string extent =
      PrintExpr(arith::Analyzer().Simplify(op->extent + op->min));
166
167
168
169
170
  PrintIndent();
  std::string vid = AllocVarID(op->loop_var.get());
  std::string start = PrintExpr(op->min);
  stream << "for (";
  PrintType(op->loop_var.dtype(), stream);
171
172
  stream << ' ' << vid << " = " << start << "; " << vid << " < " << extent
         << "; ++" << vid << ") {\n";
173
174
175
176
177
178
179
  int for_scope = BeginScope();
  PrintStmt(op->body);
  this->EndScope(for_scope);
  PrintIndent();
  stream << "}\n";
}

180
void CodeGenTileLangHIP::BindThreadIndex(const IterVar &iv) {
181
  ICHECK(!var_idmap_.count(iv->var.get()));
182
183
  var_idmap_[iv->var.get()] =
      CastFromTo(iv->thread_tag, DataType::UInt(32), iv->var.dtype());
184
185
}

186
void CodeGenTileLangHIP::PrintType(DataType t, std::ostream &os) { // NOLINT(*)
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
  int lanes = t.lanes();
  if (t.is_handle()) {
    ICHECK(t.is_scalar()) << "do not yet support vector types";
    os << "void*";
    return;
  }

  if (t.is_void()) {
    os << "void";
    return;
  }

  if (t == tl::cuTensorMapType()) {
    os << "CUtensorMap";
    return;
  }

  bool fail = false;
  if (t.is_float()) {
    switch (t.bits()) {
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
    case 16:
      if (t.is_scalar()) {
        os << "half_t";
      } else if (lanes <= 8) {
        // Emit CUDA code to access fp16 vector elements.
        //
        // half4 is stored as uint2
        //
        // h4.x is emitted as *(half2*)(&(u2.x)).x
        // h4.y is emitted as *(half2*)(&(u2.x)).y
        // h4.z is emitted as *(half2*)(&(u2.y)).x
        // h4.w is emitted as *(half2*)(&(u2.y)).y
        //
        ICHECK_EQ(lanes % 2, 0) << "only support even lane for half type";
        os << "uint" << lanes / 2;
      } else {
223
        fail = true;
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
      }
      break;
    case 32:
      if (lanes <= 4) {
        os << "float";
      } else if (lanes <= 8) {
        // Emit CUDA code to access fp32 vector elements for 4 < lanes <= 8.
        //
        // float8 is stored as ulonglong4
        //
        // f8.v1 is emitted as *(float2*)(&(ul4.x)).x
        // f8.v2 is emitted as *(float2*)(&(ul4.x)).y
        //
        ICHECK_EQ(lanes % 2, 0)
            << "only support even lane for float type with lanes > 4";
        os << "ulonglong" << lanes / 2;
      } else {
        fail = true;
      }
      break;
    case 64:
      os << "double";
      break;
    default:
      fail = true;
      break;
250
    }
251
252
253
254
    if (!fail && (t.is_scalar() || t.bits() == 16))
      return;
    if (!fail && (lanes > 4 && lanes <= 8 && t.bits() == 32))
      return;
255
256
257
258
259
260
261
262
263
264
265
266
267
    if (!fail && (lanes >= 2 && lanes <= 4)) {
      os << lanes;
      return;
    }
  } else if (t.is_bfloat16()) {
    if (t.is_scalar()) {
      os << "bfloat16_t";
    } else if (lanes <= 8) {
      ICHECK_EQ(lanes % 2, 0) << "only support even lane for half type";
      os << "uint" << lanes / 2;
    } else {
      fail = true;
    }
268
269
    if (!fail)
      return;
270
  } else if (t.is_float8()) {
271
272
273
    enable_fp8_ = true;
    os << GetFP8Type(t);
    return;
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
  } else if (t == DataType::Bool()) {
    os << "bool";
    return;
  } else if (t.is_vector_bool()) {
    // CUDA does not support bool vectors.
    // Use ushort vectors to represent instead.
    int n = t.lanes();
    if (n <= 4) {
      os << "ushort" << n;
      return;
    }
  } else if (t.is_uint() || t.is_int()) {
    if (t.is_uint()) {
      os << "u";
    }
    switch (t.bits()) {
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
    case 1: {
      if (t.is_scalar()) {
        os << "int";
        return;
      } else if (t.lanes() == 8) {
        os << "int8_t";
        return;
      } else if (t.lanes() == 16) {
        os << "int16_t";
        return;
      } else if (t.lanes() == 32) {
        os << "int";
        return;
      } else {
        LOG(FATAL) << "Cannot convert type " << t << " to CUDA type!";
305
      }
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
    }
    case 4: {
      if (t.is_scalar()) {
        os << "int";
        return;
      } else if (t.lanes() == 4) {
        os << "int16_t";
        return;
      } else if (t.lanes() == 8) {
        // directly 8 4-bit int in integer.
        os << "int";
        return;
      } else if (t.lanes() == 16) {
        os << "int2";
        return;
      } else if (t.lanes() == 32) {
        os << "int4";
        return;
      } else if (t.lanes() == 64) {
        os << "int8";
        return;
      } else {
        LOG(FATAL) << "Cannot convert type " << t << " to CUDA type!";
329
      }
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
    }
    case 8: {
      if (t.lanes() == 4) {
        // directly 4 8 bit int in integer.

        // We use int for int8x4 instead of char4 because using char4 is
        // likely to produce extra instructions to pack four int8 elements
        // into 32-bit data.
        os << "int";
        return;
      } else if (t.lanes() == 8) {
        os << "int2";
        return;
      } else if (t.lanes() == 16) {
        os << "int4";
        return;
      } else if (!t.is_uint() && t.is_scalar()) {
        os << "signed char";
348
        break;
349
350
      } else {
        os << "char";
351
352
        break;
      }
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
    }
    case 16: {
      if (t.is_scalar()) {
        os << "short";
      } else if (t.lanes() <= 4) {
        os << "short" << lanes;
      } else if (t.lanes() <= 8) {
        // Emit CUDA code to access int16 vector elements.
        //
        // short4 is stored as int2
        //
        // s4.x is emitted as *(short2*)(&(i2.x)).x
        // s4.y is emitted as *(short2*)(&(i2.x)).y
        // s4.z is emitted as *(short2*)(&(i2.y)).x
        // s4.w is emitted as *(short2*)(&(i2.y)).y
        //
        ICHECK_EQ(t.lanes() % 2, 0)
            << "only support even lane for shorT type with lanes > 4";
        os << "int" << t.lanes() / 2;
      } else {
        fail = true;
      }
      if (!fail) {
376
377
        return;
      }
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
      break;
    }
    case 32: {
      if (t.is_scalar()) {
        os << "int";
      } else if (t.lanes() <= 4) {
        os << "int" << t.lanes();
      } else if (t.lanes() <= 8) {
        // Emit CUDA code to access int32 vector elements for 4 < lanes <= 8.
        //
        // int8 is stored as longlong4
        //
        // i8.v1 is emitted as *(int2*)(&(l4.x)).x
        // i8.v2 is emitted as *(int2*)(&(l4.x)).y
        //
        ICHECK_EQ(lanes % 2, 0)
            << "only support even lane for int32 type with lanes > 4";
        os << "longlong" << lanes / 2;
      } else {
397
        fail = true;
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
      }
      if (!fail) {
        return;
      }
      break;
    }
    case 64: {
      if (t.is_scalar()) {
        os << "int64_t";
      } else if (t.lanes() == 2) {
        os << "longlong2";
      } else if (t.lanes() == 3) {
        os << "longlong3";
      } else if (t.lanes() == 4) {
        os << "longlong4";
      }
      return;
    }
    default:
      fail = true;
      break;
419
420
421
422
423
424
425
426
427
428
429
430
    }
    if (!fail && lanes == 1) {
      return;
    }
    if (!fail && (lanes >= 2 && lanes <= 4)) {
      os << lanes;
      return;
    }
  }
  LOG(FATAL) << "Cannot convert type " << t << " to CUDA type";
}

431
432
433
void CodeGenTileLangHIP::PrintVecBinaryOp(const std::string &op, DataType t,
                                          PrimExpr lhs, PrimExpr rhs,
                                          std::ostream &os) { // NOLINT(*)
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
  // Declare the result.
  std::string sret = name_supply_->FreshName("_");
  this->PrintIndent();
  this->PrintType(t, stream);
  stream << ' ' << sret << ";\n";
  int ssa_scope = BeginScope();
  {
    // Unpack into individual ops.
    std::string vlhs = SSAGetID(PrintExpr(lhs), lhs.dtype());
    std::string vrhs = SSAGetID(PrintExpr(rhs), rhs.dtype());

    for (int i = 0, lanes = t.lanes(); i < lanes; ++i) {
      std::ostringstream value_temp;
      if (isalpha(op[0])) {
        value_temp << op << "(";
        PrintVecElemLoad(vlhs, lhs.dtype(), i, value_temp);
        value_temp << ", ";
        PrintVecElemLoad(vrhs, rhs.dtype(), i, value_temp);
        value_temp << ")";
      } else {
        value_temp << "(";
        PrintVecElemLoad(vlhs, lhs.dtype(), i, value_temp);
        value_temp << op;
        PrintVecElemLoad(vrhs, rhs.dtype(), i, value_temp);
        value_temp << ")";
      }
      PrintVecElemStore(sret, t, i, value_temp.str());
    }
  }
  EndScope(ssa_scope);
  os << sret;
}

467
468
469
void CodeGenTileLangHIP::PrintVecElemLoad(const std::string &vec, DataType t,
                                          int i,
                                          std::ostream &os) { // NOLINT(*)
470
471
472
473
474
475
  if (t.is_scalar()) {
    os << vec;
    return;
  }

  static const char access[] = {'x', 'y', 'z', 'w'};
476
477
478
  ICHECK(i >= 0 && i < (t.bits() == 8                        ? 16
                        : (t.bits() == 16 || t.bits() == 32) ? 8
                                                             : 4));
479
480
481
482
483
484
485
486
487
  if (t.bits() == 8 && (t.is_int() || t.is_uint())) {
    std::string type_name = t.is_int() ? "char" : "unsigned char";
    if (t.lanes() == 2 || t.lanes() == 3) {
      os << vec << "." << access[i % t.lanes()];
    } else {
      std::string ac = t.lanes() == 4 ? vec : (vec + "." + access[i / 4]);
      os << "((" << type_name << ")(" << ac << " >> " << i % 4 * 8 << "))";
    }
  } else if (t.is_float16()) {
488
489
    os << "((half2*)(&(" << vec << "." << access[i / 2] << ")))->"
       << access[i % 2];
490
  } else if (t.is_bfloat16()) {
491
    os << "((bfloat16x2*)(&(" << vec << "." << access[i / 2] << ")))->"
492
       << access[i % 2];
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
  } else if (t.lanes() > 4 && t.lanes() <= 8) {
    std::string type_name;
    if (t.bits() == 16) {
      if (t.is_int()) {
        type_name = "short";
      } else if (t.is_uint()) {
        type_name = "ushort";
      }
    } else if (t.bits() == 32) {
      if (t.is_int()) {
        type_name = "int";
      } else if (t.is_uint()) {
        type_name = "uint";
      } else if (t.is_float()) {
        type_name = "float";
      }
    }
    ICHECK(!type_name.empty());
511
512
    os << "((" << type_name << "2*)(&(" << vec << "." << access[i / 2]
       << ")))->" << access[i % 2];
513
514
515
516
517
  } else {
    os << vec << "." << access[i];
  }
}

518
519
void CodeGenTileLangHIP::PrintVecElemStore(const std::string &vec, DataType t,
                                           int i, const std::string &value) {
520
521
  this->PrintIndent();
  static const char access[] = {'x', 'y', 'z', 'w'};
522
523
524
  ICHECK(i >= 0 && i < (t.bits() == 8                        ? 16
                        : (t.bits() == 16 || t.bits() == 32) ? 8
                                                             : 4));
525
526
  if (t.bits() == 8 && (t.is_int() || t.is_uint())) {
    if (t.lanes() == 2 || t.lanes() == 3) {
527
528
      stream << vec << '.' << access[i % t.lanes()] << "="
             << "(" << value << ");\n";
529
530
531
532
533
534
535
536
537
538
    } else {
      std::string ac = t.lanes() == 4 ? vec : (vec + "." + access[i / 4]);
      stream << ac << "=";
      // Do not read the first undef lane.
      if (i != 0) {
        stream << ac << " & ~(0x000000ff << " << i % 4 * 8 << ") |";
      }
      stream << "(" << value << " << " << i % 4 * 8 << ");\n";
    }
  } else if (t.is_float16()) {
539
540
    stream << "*((half_t*)(&(((half2*)(&(" << vec << "." << access[i / 2]
           << ")))->" << access[i % 2] << "))) = " << value << ";\n";
541
  } else if (t.is_bfloat16()) {
542
543
    stream << "((bfloat16_t*)(&(" << vec << "." << access[i / 2] << ")))["
           << (i % 2) << "] = " << value << ";\n";
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
  } else if (t.lanes() > 4 && t.lanes() <= 8) {
    std::string type_name;
    if (t.bits() == 16) {
      if (t.is_int()) {
        type_name = "short";
      } else if (t.is_uint()) {
        type_name = "ushort";
      }
    } else if (t.bits() == 32) {
      if (t.is_int()) {
        type_name = "int";
      } else if (t.is_uint()) {
        type_name = "uint";
      } else if (t.is_float()) {
        type_name = "float";
      }
    }
    ICHECK(!type_name.empty());
562
563
    stream << "((" << type_name << "2*)(&(" << vec << "." << access[i / 2]
           << ")))->" << access[i % 2] << " = " << value << ";\n";
564
565
566
567
568
  } else {
    stream << vec << "." << access[i] << " = " << value << ";\n";
  }
}

569
570
void CodeGenTileLangHIP::PrintStorageSync(const CallNode *op) {
  const std::string &sync = op->args[0].as<StringImmNode>()->value;
571
572
573
574
575
576
577
578
  if (sync == "warp") {
    // DO nothing.
  } else if (sync == "shared" || sync == "shared.dyn") {
    this->PrintIndent();
    this->stream << "__syncthreads();\n";
  }
}

579
580
581
582
583
void CodeGenTileLangHIP::PrintStorageScope(const std::string &scope,
                                           std::ostream &os) { // NOLINT(*)
  ICHECK_NE(scope, "global")
      << "Cannot allocate global memory when targeting CUDA. You must pass "
         "all global arrays as input instead";
584
585
586
587
588
589
590
  if (scope == "shared") {
    os << "__shared__ ";
  } else if (scope == "shared.dyn") {
    os << "extern __shared__ __align__(1024) ";
  }
}

591
592
593
594
std::string CodeGenTileLangHIP::CastFromTo(std::string value, DataType from,
                                           DataType target) {
  if (from == target)
    return value;
595
596
597
598
  std::ostringstream os;
  os << "((";
  this->PrintType(target, os);
  os << ")";
599
600
  if (from.is_float16() && (target.is_int() || target.is_uint()) &&
      target.bits() == 8) {
601
602
603
604
605
606
607
608
609
610
    os << "(";
    if (target.is_uint()) {
      os << "u";
    }
    os << "int)";
  }
  os << value << ")";
  return os.str();
}

611
void CodeGenTileLangHIP::VisitExpr_(const CastNode *op, std::ostream &os) {
612
613
614
615
616
  DataType from_ty = op->value.dtype();
  DataType target_ty = op->dtype;
  ICHECK_EQ(target_ty.lanes(), from_ty.lanes());

  // Emit simple C-style type conversion.
617
618
  if (from_ty.is_scalar())
    return CodeGenC::VisitExpr_(op, os);
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640

  // We could emit make_float4 like calls, but the emitted code looks
  // too compact to read. Emit this as vectorized unary ops.
  std::string sret = name_supply_->FreshName("_");
  this->PrintIndent();
  this->PrintType(target_ty, stream);
  stream << ' ' << sret << ";\n";
  {
    std::string src = SSAGetID(PrintExpr(op->value), from_ty);
    for (int i = 0, lanes = from_ty.lanes(); i < lanes; ++i) {
      std::ostringstream val;
      val << "(";
      PrintType(target_ty.element_of(), val);
      val << ")(";
      PrintVecElemLoad(src, from_ty, i, val);
      val << ")";
      PrintVecElemStore(sret, target_ty, i, val.str());
    }
  }
  os << sret;
}

641
642
643
644
void CodeGenTileLangHIP::PrintCallExtern(Type ret_type, String global_symbol,
                                         const Array<PrimExpr> &args,
                                         bool skip_first_arg,
                                         std::ostream &os) { // NOLINT(*)
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
  DataType ret_dtype = GetRuntimeDataType(ret_type);
  if (ret_dtype.is_vector()) {
    //
    // Emit an unsupported vector call
    //
    // v = intrin_f((float4*)A[0], (float4*)B[0])
    //
    // as
    //
    // float4 __ret;
    // {
    //   float4 __arg0 = ((float4*)A)[0];
    //   float4 __arg1 = ((float4*)B)[0];
    //   __ret.x = intrin_f(__arg0.x, __arg1.x);
    //   __ret.y = intrin_f(__arg0.y, __arg1.y);
    //   __ret.z = intrin_f(__arg0.z, __arg1.z);
    //   __ret.w = intrin_f(__arg0.w, __arg1.w);
    // }
    // v = __ret;
    //
    // Declare the result vector.
    std::string sret = name_supply_->FreshName("_");
    this->PrintIndent();
    this->PrintType(ret_dtype, stream);
    stream << ' ' << sret << ";\n";
    {
      // Load arguments.
      std::vector<std::string> sargs;
      size_t arg_begin = static_cast<size_t>(skip_first_arg);
      for (size_t i = arg_begin; i < args.size(); ++i) {
        std::string val = SSAGetID(PrintExpr(args[i]), args[i].dtype());
        sargs.push_back(std::move(val));
      }

      // Emit a scalar call for each lane.
      for (int i = 0; i < ret_dtype.lanes(); ++i) {
        std::ostringstream scall;
        scall << global_symbol << "(";
        for (size_t j = 0; j < sargs.size(); ++j) {
684
685
          if (j > 0)
            scall << ", ";
686
687
688
689
690
691
692
693
          PrintVecElemLoad(sargs[j], args[arg_begin + j].dtype(), i, scall);
        }
        scall << ")";
        PrintVecElemStore(sret, ret_dtype, i, scall.str());
      }
    }
    os << sret;
  } else {
694
695
    CodeGenC::PrintCallExtern(ret_type, global_symbol, args, skip_first_arg,
                              os);
696
697
698
699
  }
}

// Print a reference expression to a buffer.
700
701
702
703
std::string CodeGenTileLangHIP::GetBufferRef(DataType t,
                                             const BufferNode *buffer,
                                             PrimExpr index) {
  const VarNode *buffer_var = buffer->data.get();
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
  std::ostringstream os;
  std::string vid = GetVarID(buffer_var);
  std::string scope;
  if (alloc_storage_scope_.count(buffer_var)) {
    scope = alloc_storage_scope_.at(buffer_var);
  }
  // bool is_vol = IsVolatile(buffer_var);
  // always false for tl cutlass backend.
  bool is_vol = false;

  auto ptr_cast = [this, is_vol, scope](DataType pointed_to) {
    std::ostringstream ptr_os;
    ptr_os << "(";
    if (is_vol) {
      ptr_os << "volatile ";
    }
    if (!scope.empty() && IsScopePartOfType()) {
      PrintStorageScope(scope, ptr_os);
    }
    PrintType(pointed_to, ptr_os);
    ptr_os << "*)";
    return ptr_os.str();
  };

  DataType buffer_element_dtype = buffer->dtype;

  std::string buffer_str = vid;
  if (!HandleTypeMatch(buffer_var, buffer_element_dtype) || is_vol) {
    std::stringstream temp;
    temp << "(" << ptr_cast(buffer_element_dtype) << vid << ")";
    buffer_str = temp.str();
  }

  std::string index_str = PrintExpr(index);
  if (t.bits() == 4 || (t.bits() == 1 && t.is_int())) {
    // This is a special case, because CodegenCUDA::PrintType()
    // returns "int" for bool and for 4-bit integers. In most cases,
    // we divide by the number of lanes to determine the index.
    // However, the backing type for scalar int4 and scalar bool is
    // int32.  Therefore, we need to divide by the ratio of their
    // sizes in that case.
    int div_factor = (t.lanes() == 1) ? (32 / t.bits()) : t.lanes();

    os << "*("
       << "(" << ptr_cast(t) << vid << ")"
       << " + " << index_str << " / " << div_factor << ")";
  } else if (t == buffer_element_dtype) {
    os << buffer_str << "[" << index_str << "]";
  } else {
    os << "*" << ptr_cast(t) << "(" << buffer_str << " + " << index_str << ")";
  }

  return os.str();
}

759
void CodeGenTileLangHIP::VisitExpr_(const CallNode *op, std::ostream &os) {
760
761
762
763
  auto print_extern_call_stmt = [&](std::string name, size_t offset = 0) {
    this->PrintIndent();
    this->stream << name << "(";
    for (size_t i = offset; i < op->args.size(); i++) {
764
765
      if (i > offset)
        this->stream << ", ";
766
767
768
769
770
771
772
773
774
775
      this->stream << this->PrintExpr(op->args[i]);
    }
    this->stream << ");\n";
  };
  if (op->op.same_as(builtin::ptx_cp_async())) {
    std::string dst = this->PrintExpr(op->args[0]);
    std::string dst_offset = this->PrintExpr(op->args[1]);
    std::string src = this->PrintExpr(op->args[2]);
    std::string src_offset = this->PrintExpr(op->args[3]);
    std::string size = this->PrintExpr(op->args[4]);
776
777
    // use size of argument list to indicate whether or not to use predicated
    // cp.async
778
779
    if (op->args.size() == 5) {
      this->PrintIndent();
780
781
      this->stream << "tl::cp_async_gs<" << size << ">(" << dst << "+"
                   << dst_offset << ", " << src << "+" << src_offset << ");\n";
782
783
784
    } else {
      std::string condition = this->PrintExpr(op->args[5]);
      this->PrintIndent();
785
786
787
      this->stream << "tl::cp_async_gs_conditional<" << size << ">(" << dst
                   << "+" << dst_offset << ", " << src << "+" << src_offset
                   << ", " << condition << ");\n";
788
789
790
791
792
793
794
    }
  } else if (op->op.same_as(builtin::ptx_commit_group())) {
    print_extern_call_stmt("tl::cp_async_commit");
  } else if (op->op.same_as(builtin::ptx_wait_group())) {
    int n = Downcast<IntImm>(op->args[0])->value;
    std::string func_name = "tl::cp_async_wait<" + std::to_string(n) + ">";
    print_extern_call_stmt(func_name, 1);
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
  } else if (op->op.same_as(builtin::create_barriers())) {
    this->PrintIndent();
    int barrier_count = Downcast<IntImm>(op->args[0])->value;
    std::string barrier_name = "_mbarrier";
    this->stream << "__shared__ uint64_t " << barrier_name << "["
                 << barrier_count << "];\n";
  } else if (op->op.same_as(tl::get_mbarrier())) {
    std::string barrier_name = "_mbarrier";
    std::string barrier_id = this->PrintExpr(op->args[0]);
    os << barrier_name + "[" + barrier_id + "]";
  } else if (op->op.same_as(builtin::ptx_arrive_barrier())) {
    print_extern_call_stmt("tl::mbarrier_arrive");
  } else if (op->op.same_as(builtin::ptx_init_barrier_thread_count())) {
    print_extern_call_stmt("tl::mbarrier_init");
  } else if (op->op.same_as(builtin::ptx_arrive_barrier_expect_tx())) {
    print_extern_call_stmt("tl::mbarrier_arrive_expect_tx");
  } else if (op->op.same_as(builtin::ptx_cp_async_barrier())) {
    print_extern_call_stmt("tl::mbarrier_cp_async_arrive");
  } else if (op->op.same_as(tl::mbarrier_expect_tx())) {
    print_extern_call_stmt("tl::mbarrier_expect_tx");
  } else if (op->op.same_as(tl::mbarrier_wait_parity())) {
    print_extern_call_stmt("tl::mbarrier_wait");
817
  } else if (op->op.same_as(tl::ptx_stmatrix())) {
818
819
820
    int trans = Downcast<IntImm>(op->args[0])->value;
    int num = Downcast<IntImm>(op->args[1])->value;
    std::string func_name = "tl::ptx_stmatrix_x" + std::to_string(num);
821
822
    if (trans == 1)
      func_name += "_trans";
823
    print_extern_call_stmt(func_name, 2);
824
  } else if (op->op.same_as(tl::wait_wgmma())) {
825
826
827
    this->PrintIndent();
    int num_mma = Downcast<IntImm>(op->args[0])->value;
    this->stream << "tl::wait_wgmma<" << std::to_string(num_mma) << ">();\n";
828
  } else if (op->op.same_as(tl::pack_b16())) {
829
830
    os << "__pack_half2(" << this->PrintExpr(op->args[0]) << ", "
       << this->PrintExpr(op->args[1]) << ")";
831
832
833
834
835
836
837
838
839
840
  } else if (op->op.same_as(tl::__ldg())) {
    // HIP fallback: regular load
    const BufferLoadNode *bl = op->args[0].as<BufferLoadNode>();
    ICHECK(bl) << "T.__ldg expects a BufferLoad as the first argument.";
    ICHECK_EQ(bl->indices.size(), 1)
        << "T.__ldg currently supports flattened 1D buffer accesses.";
    const BufferNode *buffer = bl->buffer.get();
    PrimExpr base = bl->indices[0];
    auto buffer_ref = this->GetBufferRef(op->dtype, buffer, base);
    os << buffer_ref;
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
  } else if (op->op.same_as(builtin::tvm_fill_fragment())) {
    need_mma_h_ = true;
    ICHECK_EQ(op->args.size(), 6U);
    os << "nvcuda::wmma::fill_fragment(";
    this->PrintExpr(op->args[0], os);
    os << "[";
    this->PrintExpr(op->args[4], os);
    os << "], ";
    this->PrintExpr(op->args[5], os);
    os << ")";
  } else if (op->op.same_as(builtin::tvm_load_matrix_sync())) {
    need_mma_h_ = true;
    ICHECK_EQ(op->args.size(), 8U);
    os << "nvcuda::wmma::load_matrix_sync(";
    this->PrintExpr(op->args[0], os);
    os << "[";
    this->PrintExpr(op->args[4], os);
    os << "], ";
    this->PrintExpr(op->args[5], os);
    os << ", ";
    this->PrintExpr(op->args[6], os);
    os << ")";
  } else if (op->op.same_as(builtin::tvm_store_matrix_sync())) {
    need_mma_h_ = true;
    ICHECK_EQ(op->args.size(), 8U);
    os << "nvcuda::wmma::store_matrix_sync(";
    this->PrintExpr(op->args[5], os);
    os << ", ";
    this->PrintExpr(op->args[0], os);
    os << "[";
    this->PrintExpr(op->args[4], os);
    os << "], ";
    this->PrintExpr(op->args[6], os);
874
    if (const StringImmNode *str = op->args[7].as<StringImmNode>()) {
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
      os << ", nvcuda::wmma::mem_" << str->value;
    } else {
      LOG(FATAL) << "Invalid parameters";
    }
    os << ")";
  } else if (op->op.same_as(builtin::tvm_mma_sync())) {
    need_mma_h_ = true;
    ICHECK_EQ(op->args.size(), 8U);
    os << "nvcuda::wmma::mma_sync(";
    for (int i = 0; i < 4; ++i) {
      this->PrintExpr(op->args[i * 2], os);
      os << "[";
      this->PrintExpr(op->args[i * 2 + 1], os);
      os << "]" << ((i < 3) ? ", " : ")");
    }
  } else if (op->op.same_as(builtin::tvm_bmma_sync())) {
    need_mma_h_ = true;
    ICHECK_EQ(op->args.size(), 8U);
    os << "nvcuda::wmma::bmma_sync(";
    for (int i = 0; i < 4; ++i) {
      this->PrintExpr(op->args[i * 2], os);
      os << "[";
      this->PrintExpr(op->args[i * 2 + 1], os);
      os << "]" << ((i < 3) ? ", " : ")");
    }
900
  } else if (op->op.same_as(tl::tvm_mfma())) {
901
    // arg 0: prefix: {otype}_{intrM}x{intrN}x{intrK}_{itype}
902
903
904
905
906
907
908
909
910
911
912
913
    // arg 1: A layout: row/col
    // arg 2: B layout: row/col
    // arg 3: A precision: float16, float32, ...
    // arg 4: B precision: float16, float32, ...
    // arg 5: C precision: float32, float64, ...
    // arg 6: A multiplicand
    // arg 7: A multiplicand index
    // arg 8: B multiplicand
    // arg 9: B multiplicand index
    // arg 10: C accumulator
    // arg 11: C accumulator index

914
915
    ICHECK(op->args.size() == 12U)
        << "Invalid number of arguments for tvm_mfma";
916
917
918
919
920
921
922
923
924
925
926
927
    std::string prefix = Downcast<StringImm>(op->args[0])->value;
    std::string A_layout = Downcast<StringImm>(op->args[1])->value;
    std::string B_layout = Downcast<StringImm>(op->args[2])->value;
    std::string A_dtype = Downcast<StringImm>(op->args[3])->value;
    std::string B_dtype = Downcast<StringImm>(op->args[4])->value;
    std::string C_dtype = Downcast<StringImm>(op->args[5])->value;
    std::string a_ref = this->PrintExpr(op->args[6]);
    std::string a_bias = this->PrintExpr(op->args[7]);
    std::string b_ref = this->PrintExpr(op->args[8]);
    std::string b_bias = this->PrintExpr(op->args[9]);
    std::string c_ref = this->PrintExpr(op->args[10]);
    std::string c_bias = this->PrintExpr(op->args[11]);
928
929
    ICHECK(A_layout == "row" || B_layout == "row")
        << "Matrix core only support row major";
930
931
932
933
934
    // map for dtype -> float32x4 -> float4
    std::unordered_map<std::string, std::string> dtype_map = {
        {"int8", "char"},
        {"int32", "int"},
        {"int8x4", "int32_t"},
935
        {"int8x8", "int64_t"},
936
937
938
939
940
        {"int32x4", "int32x4"},
        {"float16", "half"},
        {"float32", "float"},
        {"float64", "double"},
        {"float16x4", "float16x4"},
941
        {"bfloat16x4", "bfloat16x4_vec"},
942
        {"float32x4", "float32x4"},
943
944
        {"float8_e4m3fnuzx4", "fp8_e4_4_t"},
        {"float8_e4m3fnuzx8", "long"},
945
        {"float32x16", "float32x16"}};
946
    std::string call_mfma_code = R"({
alex_xiao's avatar
alex_xiao committed
947
948
949
950
      *((({C_dtype}*){c_ref}) + {c_bias}) = {mfma_buildin}(*((({A_dtype}*){a_ref}) + {a_bias}),
                    *((({B_dtype}*){b_ref}) + {b_bias}),
                    *((({C_dtype}*){c_ref}) + {c_bias}), 0, 0, 0);
    })";
951
952
    std::string mfma_buildin = "__builtin_amdgcn_mfma_" + prefix;
    Replacer replacer;
953

954
    replacer.register_rule("{mfma_buildin}", mfma_buildin);
955
956
957
    replacer.register_rule("{A_dtype}", dtype_map[A_dtype]);
    replacer.register_rule("{B_dtype}", dtype_map[B_dtype]);
    replacer.register_rule("{C_dtype}", dtype_map[C_dtype]);
958
959
960
961
962
963
964
    replacer.register_rule("{a_ref}", a_ref);
    replacer.register_rule("{a_bias}", a_bias);
    replacer.register_rule("{b_ref}", b_ref);
    replacer.register_rule("{b_bias}", b_bias);
    replacer.register_rule("{c_ref}", c_ref);
    replacer.register_rule("{c_bias}", c_bias);
    os << replacer.rewrite(call_mfma_code);
965
966
967
968
969
970
971
  } else if (op->op.same_as(builtin::thread_return())) {
    os << "return";
  } else if (op->op.same_as(tl::tl_gemm())) {
    ICHECK(op->args.size() == 4) << "tl_gemm expects 4 arguments <op_instance, "
                                    "A_ptr, B_ptr, C_ptr>, but got "
                                 << op->args.size();
    auto op_instance = Downcast<StringImm>(op->args[0]);
972
973
    this->PrintCallExtern(GetType(tvm::ffi::GetRef<PrimExpr>(op)),
                          op_instance->value, op->args, true, os);
974
975
  } else if (op->op.same_as(tl::tl_gemm_sp())) {
    LOG(FATAL) << "tl_gemm_sp is not supported on HIP";
alex_xiao's avatar
alex_xiao committed
976
977
978
979
980
981
982
  } else if (op->op.same_as(tl::loop_break())) {
    this->PrintIndent();
    this->stream << "break;\n";
  } else if (op->op.same_as(tl::no_set_max_nreg())) {
    // HIP doesn't need explicit register management like CUDA
    // This is a no-op for HIP
    return;
983
  } else {
984
985
986
987
    CodeGenC::VisitExpr_(op, os);
  }
}

988
void CodeGenTileLangHIP::VisitStmt_(const AttrStmtNode *op) {
989
  if (op->attr_key == tir::attr::async_commit_queue_scope) {
990
991
992
    const IntImmNode *queue_id = op->value.as<IntImmNode>();
    ICHECK(queue_id && queue_id->value == 0)
        << "For CUDA, the index of an async queue must be 0.";
993
994
995
996
997
998
999
    this->VisitStmt(op->body);
    auto commit_group = Call(DataType::Void(), builtin::ptx_commit_group(), {});
    this->VisitExpr(commit_group, this->stream);
    return;
  } else if (op->attr_key == tir::attr::async_wait_queue_scope) {
    auto wait_attrs = GetAsyncWaitAttributes(op);
    auto queue_id = wait_attrs.first.as<IntImmNode>();
1000
1001
    ICHECK(queue_id && queue_id->value == 0)
        << "For CUDA, the index of an async queue must be 0.";
1002
    auto wait_cnt = wait_attrs.second;
1003
1004
    auto wait_group =
        Call(DataType::Void(), builtin::ptx_wait_group(), {wait_cnt});
1005
1006
1007
1008
1009
1010
1011
    this->VisitExpr(wait_group, this->stream);
    auto inner = op->body.as<AttrStmtNode>();
    ICHECK(inner);
    this->VisitStmt(inner->body);
    return;
  } else if (op->attr_key == "threadblock_swizzle_pattern") {
    this->PrintIndent();
1012
    const StringImmNode *pattern = op->value.as<StringImmNode>();
1013
1014
1015
1016
1017
1018
1019
1020
    ICHECK(pattern);
    this->stream << "const dim3 blockIdx = " << pattern->value << "();\n";
    this->VisitStmt(op->body);
    return;
  }
  CodeGenC::VisitStmt_(op);
}

1021
void CodeGenTileLangHIP::VisitStmt_(const AllocateNode *op) {
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
  ICHECK(!is_zero(op->condition));
  std::string vid = AllocVarID(op->buffer_var.get());

  this->PrintIndent();
  std::string scope = GetPtrStorageScope(op->buffer_var);
  PrintStorageScope(scope, stream);
  PrintType(op->dtype, stream);

  if (scope == "shared.dyn") {
    stream << ' ' << vid << "[];\n";
  } else {
    size_t constant_size = op->ConstantAllocationSize();
1034
1035
    ICHECK_GT(constant_size, 0)
        << "Can only handle constant size stack allocation for now";
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048

    if ((op->dtype == DataType::Int(4) || op->dtype == DataType::UInt(4) ||
         op->dtype == DataType::Int(1)) &&
        scope == "shared") {
      constant_size = constant_size / (32 / op->dtype.bits());
    }
    stream << ' ' << vid << '[' << constant_size << "];\n";
  }

  RegisterHandleType(op->buffer_var.get(), op->dtype);
  this->PrintStmt(op->body);
}

1049
void CodeGenTileLangHIP::VisitExpr_(const RampNode *op, std::ostream &os) {
1050
1051
1052
1053
1054
1055
1056
1057
  int lanes = static_cast<int>(Downcast<IntImm>(op->lanes)->value);
  CHECK_LE(lanes, 4) << "ValueError: Ramp of more than 4 lanes is not allowed.";
  os << "(make_";
  PrintType(op->dtype, os);
  os << "(";
  for (int i = 0; i < lanes; i++) {
    os << "(" << PrintExpr(op->base) << ")"
       << "+(" << PrintExpr(op->stride) << "*" << i << ")";
1058
1059
    if (i != lanes - 1)
      os << ", ";
1060
1061
1062
1063
  }
  os << "))";
}

1064
1065
void CodeGenTileLangHIP::VisitExpr_(const BroadcastNode *op,
                                    std::ostream &os) { // NOLINT(*)
1066
  int lanes = static_cast<int>(Downcast<IntImm>(op->lanes)->value);
1067
1068
  if ((op->dtype.is_int() || op->dtype.is_uint()) && op->dtype.bits() == 8 &&
      lanes == 4) {
1069
    // make_int8x4
1070
    const int64_t *p = as_const_int(op->value);
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
    ICHECK(p);
    int64_t v = *p & 0xFF;
    v = (v << 24) | (v << 16) | (v << 8) | v;
    if (op->dtype.is_uint()) {
      os << "(uint)" << v;
    } else {
      os << "(int)" << v;
    }
    return;
  }

  if (op->dtype.is_float16()) {
    std::string v = PrintExpr(op->value);
    os << "make_";
    PrintType(op->dtype, os);
    os << '(';
    for (int i = 0; i < lanes / 2; ++i) {
1088
1089
      if (i != 0)
        os << ", ";
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
      os << "__pack_half2(" << v << ", " << v << ")";
    }
    os << ')';
    return;
  }

  if (op->dtype.is_bfloat16()) {
    std::string v = PrintExpr(op->value);
    os << "make_";
    PrintType(op->dtype, os);
    os << '(';
    for (int i = 0; i < lanes / 2; ++i) {
1102
1103
      if (i != 0)
        os << ", ";
1104
      os << "__pack_bfloat162(" << v << ", " << v << ")";
1105
1106
1107
1108
1109
    }
    os << ')';
    return;
  }

1110
1111
  if (op->dtype.is_float() && op->dtype.bits() == 32 &&
      op->dtype.lanes() == 8) {
1112
1113
1114
    std::string v = PrintExpr(op->value);
    os << "make_ulonglong4(";
    for (int i = 0; i < 4; ++i) {
1115
1116
      if (i != 0)
        os << ", ";
1117
1118
1119
1120
1121
1122
1123
1124
      os << "*(unsigned long long*)&make_float2(" << v << ", " << v << ")";
    }
    os << ')';
    return;
  }

  if ((op->dtype.is_int() || op->dtype.is_uint()) && op->dtype.bits() == 4) {
    bool fail = false;
1125
    const int64_t *p = as_const_int(op->value);
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
    ICHECK(p);
    int64_t v = *p & 0xF;

    if (lanes == 4) {
      v = (v << 12) | (v << 8) | (v << 4) | v;
      if (op->dtype.is_uint()) {
        os << "(uint16_t)" << v;
      } else {
        os << "(int16_t)" << v;
      }
    } else {
1137
1138
      v = (v << 28) | (v << 24) | (v << 20) | (v << 16) | (v << 12) | (v << 8) |
          (v << 4) | v;
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
      if (lanes == 8) {
        if (op->dtype.is_uint()) {
          os << "(uint)" << v;
        } else {
          os << "(int)" << v;
        }
      } else if (lanes == 16 || lanes == 32) {
        os << "make_";
        PrintType(op->dtype, os);
        os << '(';
        for (int i = 0; i < lanes / 8; ++i) {
1150
1151
          if (i != 0)
            os << ", ";
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
          if (op->dtype.is_uint()) {
            os << "(uint)" << v;
          } else {
            os << "(int)" << v;
          }
        }
        os << ')';
      } else {
        fail = true;
      }
    }

    if (!fail) {
      return;
    }
  }

  std::string v = PrintExpr(op->value);
  os << "make_";
  PrintType(op->dtype, os);
  os << '(';
  for (int i = 0; i < lanes; ++i) {
1174
1175
    if (i != 0)
      os << ", ";
1176
1177
1178
1179
1180
    os << v;
  }
  os << ')';
}

1181
1182
inline void PrintConst(const FloatImmNode *op, std::ostream &os,
                       CodeGenTileLangHIP *p) { // NOLINT(*)
1183
1184
1185
1186
1187
  // Type code is kBFloat
  if (op->dtype.is_bfloat16()) {
    os << "bfloat16_t";
    os << '(' << std::scientific << op->value << 'f' << ')';
    return;
alex_xiao's avatar
alex_xiao committed
1188
1189
  } else if (op->dtype.is_float8_e4m3fnuz() || op->dtype.is_float8_e4m3() ||
             op->dtype.is_float8_e4m3fn()) {
1190
1191
1192
    os << "fp8_e4_t";
    os << '(' << std::scientific << op->value << 'f' << ')';
    return;
1193
1194
1195
  }
  // Type code is kFloat
  switch (op->dtype.bits()) {
1196
1197
1198
1199
1200
1201
  case 64:
  case 32: {
    std::ostringstream temp;
    if (std::isinf(op->value)) {
      if (op->value < 0) {
        temp << "-";
1202
      }
1203
      temp << ((op->dtype.bits() == 32) ? "HUGE_VALF" : "HUGE_VAL");
1204
    } else if (std::isnan(op->value)) {
1205
      temp << ((op->dtype.bits() == 32) ? "NAN" : "NAN");
1206
1207
1208
1209
    } else {
      temp << std::scientific << op->value;
      if (op->dtype.bits() == 32)
        temp << 'f';
1210
    }
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
    p->MarkConst(temp.str());
    os << temp.str();
    break;
  }
  case 16: {
    os << "half_t" << '(';
    FloatImm const_f32 = FloatImm(DataType::Float(32), op->value);
    PrintConst(const_f32.get(), os, p);
    os << ')';
    break;
  }
  default:
    LOG(FATAL) << "Bad bit-width for float: " << op->dtype << "\n";
1224
1225
1226
  }
}

1227
1228
void CodeGenTileLangHIP::VisitExpr_(const FloatImmNode *op,
                                    std::ostream &os) { // NOLINT(*)
1229
1230
1231
  PrintConst(op, os, this);
}

1232
1233
1234
void CodeGenTileLangHIP::HandleVolatileLoads(const std::string &value,
                                             const BufferLoadNode *op,
                                             std::ostream &os) {
1235
1236
1237
  // Cast away volatile qualifier for fp16 types. That is, only loads and
  // stores are volatile. The loaded objects are not marked as volatile.
  //
1238
1239
  if ((op->dtype.is_float16() || op->dtype.is_bfloat16()) &&
      IsVolatile(op->buffer->data.get())) {
1240
1241
1242
1243
1244
1245
1246
1247
    os << "(";
    PrintType(op->dtype, os);
    os << ")(" << value << ")";
  } else {
    os << value;
  }
}

1248
1249
1250
void CodeGenTileLangHIP::PrintVecElemLoadExpr(DataType t, int i,
                                              const std::string &value,
                                              std::ostream &os) {
1251
1252
1253
1254
1255
1256
  ICHECK_GT(t.lanes(), 1);
  if (t.bits() == 8 && (t.is_int() || t.is_uint())) {
    if (!(t.lanes() == 2 || t.lanes() == 3)) {
      if (i != 0) {
        os << "|";
      }
1257
1258
      os << "((0x000000ff << " << i * 8 << ") & (" << value << " << " << i * 8
         << "))";
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
      return;
    }
  }

  if (t.is_float16()) {
    if (i == 0) {
      os << "make_";
      PrintType(t, os);
      os << '(';
    }
    if (i % 2 == 0) {
      os << "__pack_half2(" << value;
    } else {
      os << "," << value << ")";
      if (i != t.lanes() - 1) {
        os << ",";
      } else {
        os << ")";
      }
    }
    return;
  }

  if (t.is_bfloat16()) {
    if (i == 0) {
      os << "make_";
      PrintType(t, os);
      os << '(';
    }
    if (i % 2 == 0) {
      os << "__pack_bfloat162(" << value;
    } else {
      os << "," << value << ")";
      if (i != t.lanes() - 1) {
        os << ",";
      } else {
        os << ")";
      }
    }
    return;
  }

  if (i == 0) {
    os << "make_";
    PrintType(t, os);
    os << "(";
  }
  os << value;
  if (i != t.lanes() - 1) {
    os << ",";
  } else {
    os << ")";
  }
  return;
}

1315
void CodeGenTileLangHIP::AddFunction(const PrimFunc &f) {
1316
1317
1318
1319
1320
1321
  // clear previous generated state.
  this->InitFuncState(f);
  // reserve keywords
  ReserveKeywordsAsUnique();

  auto global_symbol = f->GetAttr<String>(tvm::attr::kGlobalSymbol);
1322
  ICHECK(global_symbol.has_value())
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
      << "CodeGenC: Expect PrimFunc to have the global_symbol attribute";
  bool no_alias = f->HasNonzeroAttr(tir::attr::kNoAlias);

  this->PrintFuncPrefix(stream);
  CodeGenC::PrintType(f->ret_type, stream);
  this->PrintExtraAttrs(f, stream);
  this->stream << " " << static_cast<std::string>(global_symbol.value()) << "(";

  for (size_t i = 0; i < f->params.size(); ++i) {
    tir::Var v = f->params[i];
    std::string vid = AllocVarID(v.get());
1334
1335
    if (i != 0)
      stream << ", ";
1336
1337
    if (v.dtype().is_handle()) {
      // work around for grid constant parameters.
1338
      if (auto *ptr = v->type_annotation.as<PointerTypeNode>()) {
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
        if (ptr->storage_scope == "grid_constant") {
          stream << "__grid_constant__ const ";
          CodeGenC::PrintType(ptr->element_type, stream);
          stream << ' ' << vid;
          continue;
        }
      }

      auto it = alloc_storage_scope_.find(v.get());
      if (it != alloc_storage_scope_.end()) {
        PrintStorageScope(it->second, stream);
      }

      CodeGenC::PrintType(GetType(v), stream);
1353
1354
      if (auto *ptr = v->type_annotation.as<PointerTypeNode>()) {
        if (auto *prim = ptr->element_type.as<PrimTypeNode>()) {
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
          RegisterHandleType(v.get(), prim->dtype);
        }
      }

      if (no_alias) {
        PrintRestrict(v, stream);
      }
    } else {
      CodeGenC::PrintType(GetType(v), stream);
    }
    stream << ' ' << vid;
  }
  stream << ") {\n";
  this->PreFunctionBody(f);
  int func_scope = this->BeginScope();
  this->PrintStmt(f->body);
  this->EndScope(func_scope);
  this->PrintIndent();
  this->stream << "}\n\n";
}

1376
1377
} // namespace codegen
} // namespace tvm