codegen_hip.cc 41.9 KB
Newer Older
1
2
3
4
5
6
/*!
 * \file target/codegen.cc
 */

#include "codegen_hip.h"
#include <tvm/arith/analyzer.h>
7
#include <tvm/ffi/function.h>
8
#include <tvm/tir/index_map.h>
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#include <tvm/tir/op.h>

#include <cmath>
#include <string>
#include <utility>
#include <vector>

#include "../op/builtin.h"
#include "../op/bulk_copy.h"
#include "target/source/ptx.h"

namespace tvm {
namespace codegen {

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
static std::string GetFP8Type(DataType type) {
  std::stringstream stream;
  int32_t lanes = type.lanes();
  std::string vec;
  if (type.is_scalar()) {
    vec = "";
  } else if (lanes == 2) {
    vec = "_2";
  } else if (lanes == 4) {
    vec = "_4";
  } else if (lanes == 8) {
    vec = "_8";
  } else if (lanes == 16) {
    vec = "_16";
  } else {
    LOG(FATAL) << "Only support scalar and vector types of width (2, 4, 8, 16) "
                  "for FP8";
  }
  if (type.code() == DataType::kFloat8_e4m3fn) {
    stream << "fp8_e4" << vec << "_t";
  } else if (type.code() == DataType::kFloat8_e4m3fnuz) {
    stream << "fp8_e4" << vec << "_t";
  } else if (type.code() == DataType::kFloat8_e5m2) {
    stream << "fp8_e5" << vec << "_t";
  } else {
    LOG(FATAL) << "Unsupported FP8 type in HIP codegen";
  }
  return stream.str();
}

53
54
55
56
57
/*!
 * \brief Replace patterns with replacement strings.
 * \note should use std::format instead when codebase is ported to C++20.
 */
class Replacer {
58
59
60
public:
  void register_rule(const std::string &pattern,
                     const std::string &replacement) {
61
62
63
    _rules.emplace_back(pattern, replacement);
  }
  std::string rewrite(std::string str) {
64
    for (auto &&rule : _rules) {
65
66
67
68
69
70
71
72
73
74
75
76
77
      auto [pattern, replacement] = rule;
      size_t len = pattern.size();
      size_t new_len = replacement.size();
      size_t pos = str.find(pattern);
      while (pos != std::string::npos) {
        str = str.replace(pos, len, replacement);
        pos = str.find(pattern, pos + new_len);
      }
    }
    return str;
  }
  void empty_rules() { _rules.clear(); }

78
private:
79
80
81
82
83
  std::vector<std::pair<std::string, std::string>> _rules;
};

CodeGenTileLangHIP::CodeGenTileLangHIP() { restrict_keyword_ = "__restrict__"; }

84
85
86
void CodeGenTileLangHIP::PrintFuncPrefix(std::ostream &os) {
  os << "extern \"C\" __global__ ";
}
87
88

class LaunchConfigExtractor : public tir::StmtVisitor {
89
90
private:
  void VisitStmt_(const AttrStmtNode *op) final {
91
92
    if (op->attr_key == tir::attr::thread_extent) {
      IterVar iv = Downcast<IterVar>(op->node);
93
94
      if (iv->var->name_hint == "threadIdx.x" ||
          iv->thread_tag == "threadIdx.x") {
95
        threadIdx_x_ext = op->value;
96
97
      } else if (iv->var->name_hint == "threadIdx.y" ||
                 iv->thread_tag == "threadIdx.y") {
98
        threadIdx_y_ext = op->value;
99
100
      } else if (iv->var->name_hint == "threadIdx.z" ||
                 iv->thread_tag == "threadIdx.z") {
101
102
103
104
105
106
        threadIdx_z_ext = op->value;
      }
    }
    StmtVisitor::VisitStmt_(op);
  }

107
public:
108
109
110
111
112
  PrimExpr threadIdx_x_ext = Integer(1);
  PrimExpr threadIdx_y_ext = Integer(1);
  PrimExpr threadIdx_z_ext = Integer(1);
};

113
void CodeGenTileLangHIP::PrintExtraAttrs(const PrimFunc &f, std::ostream &os) {
114
115
116
  LaunchConfigExtractor extractor;
  extractor(f->body);
  arith::Analyzer analyzer;
117
118
119
120
121
  PrimExpr threadIdx_ext =
      analyzer.Simplify(extractor.threadIdx_x_ext * extractor.threadIdx_y_ext *
                        extractor.threadIdx_z_ext);
  if (const IntImmNode *const threadIdx_ext_int =
          threadIdx_ext.as<IntImmNode>()) {
122
    if (threadIdx_ext_int->value == 1) {
123
124
      // unable to extract the number of threads per block, hence directly
      // return
125
126
127
128
129
130
131
132
133
134
135
136
      return;
    }
    stream << " __launch_bounds__(" << threadIdx_ext_int->value << ")";
  }
}

std::string CodeGenTileLangHIP::Finish() {
  // hip must need a header file.
  decl_stream << "#include <hip/hip_runtime.h>\n";
  if (need_mma_h_) {
    decl_stream << "#include <mma.h>\n";
  }
137
138
139
140
141

  if (enable_fp8_) {
    decl_stream << "#include <tl_templates/hip/hip_fp8.h>\n";
  }

142
143
144
145
146
  decl_stream << "#include <tl_templates/hip/gemm.h>\n";
  decl_stream << "#include <tl_templates/hip/copy.h>\n";
  decl_stream << "#include <tl_templates/hip/reduce.h>\n";
  decl_stream << "#include <tl_templates/hip/ldsm.h>\n";
  decl_stream << "#include <tl_templates/hip/threadblock_swizzle.h>\n";
147
  decl_stream << "#include <tl_templates/hip/debug.h>\n";
148
149
150
151
  decl_stream << "\n";
  return CodeGenC::Finish();
}

152
void CodeGenTileLangHIP::VisitStmt_(const tir::ForNode *op) {
153
154
155
156
  if (op->kind == tir::ForKind::kUnrolled) {
    PrintIndent();
    stream << "#pragma unroll\n";
  }
157
158
  std::string extent =
      PrintExpr(arith::Analyzer().Simplify(op->extent + op->min));
159
160
161
162
163
  PrintIndent();
  std::string vid = AllocVarID(op->loop_var.get());
  std::string start = PrintExpr(op->min);
  stream << "for (";
  PrintType(op->loop_var.dtype(), stream);
164
165
  stream << ' ' << vid << " = " << start << "; " << vid << " < " << extent
         << "; ++" << vid << ") {\n";
166
167
168
169
170
171
172
  int for_scope = BeginScope();
  PrintStmt(op->body);
  this->EndScope(for_scope);
  PrintIndent();
  stream << "}\n";
}

173
void CodeGenTileLangHIP::BindThreadIndex(const IterVar &iv) {
174
  ICHECK(!var_idmap_.count(iv->var.get()));
175
176
  var_idmap_[iv->var.get()] =
      CastFromTo(iv->thread_tag, DataType::UInt(32), iv->var.dtype());
177
178
}

179
void CodeGenTileLangHIP::PrintType(DataType t, std::ostream &os) { // NOLINT(*)
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
  int lanes = t.lanes();
  if (t.is_handle()) {
    ICHECK(t.is_scalar()) << "do not yet support vector types";
    os << "void*";
    return;
  }

  if (t.is_void()) {
    os << "void";
    return;
  }

  if (t == tl::cuTensorMapType()) {
    os << "CUtensorMap";
    return;
  }

  bool fail = false;
  if (t.is_float()) {
    switch (t.bits()) {
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
    case 16:
      if (t.is_scalar()) {
        os << "half_t";
      } else if (lanes <= 8) {
        // Emit CUDA code to access fp16 vector elements.
        //
        // half4 is stored as uint2
        //
        // h4.x is emitted as *(half2*)(&(u2.x)).x
        // h4.y is emitted as *(half2*)(&(u2.x)).y
        // h4.z is emitted as *(half2*)(&(u2.y)).x
        // h4.w is emitted as *(half2*)(&(u2.y)).y
        //
        ICHECK_EQ(lanes % 2, 0) << "only support even lane for half type";
        os << "uint" << lanes / 2;
      } else {
216
        fail = true;
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
      }
      break;
    case 32:
      if (lanes <= 4) {
        os << "float";
      } else if (lanes <= 8) {
        // Emit CUDA code to access fp32 vector elements for 4 < lanes <= 8.
        //
        // float8 is stored as ulonglong4
        //
        // f8.v1 is emitted as *(float2*)(&(ul4.x)).x
        // f8.v2 is emitted as *(float2*)(&(ul4.x)).y
        //
        ICHECK_EQ(lanes % 2, 0)
            << "only support even lane for float type with lanes > 4";
        os << "ulonglong" << lanes / 2;
      } else {
        fail = true;
      }
      break;
    case 64:
      os << "double";
      break;
    default:
      fail = true;
      break;
243
    }
244
245
246
247
    if (!fail && (t.is_scalar() || t.bits() == 16))
      return;
    if (!fail && (lanes > 4 && lanes <= 8 && t.bits() == 32))
      return;
248
249
250
251
252
253
254
255
256
257
258
259
260
    if (!fail && (lanes >= 2 && lanes <= 4)) {
      os << lanes;
      return;
    }
  } else if (t.is_bfloat16()) {
    if (t.is_scalar()) {
      os << "bfloat16_t";
    } else if (lanes <= 8) {
      ICHECK_EQ(lanes % 2, 0) << "only support even lane for half type";
      os << "uint" << lanes / 2;
    } else {
      fail = true;
    }
261
262
    if (!fail)
      return;
263
  } else if (t.is_float8()) {
264
265
266
    enable_fp8_ = true;
    os << GetFP8Type(t);
    return;
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
  } else if (t == DataType::Bool()) {
    os << "bool";
    return;
  } else if (t.is_vector_bool()) {
    // CUDA does not support bool vectors.
    // Use ushort vectors to represent instead.
    int n = t.lanes();
    if (n <= 4) {
      os << "ushort" << n;
      return;
    }
  } else if (t.is_uint() || t.is_int()) {
    if (t.is_uint()) {
      os << "u";
    }
    switch (t.bits()) {
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
    case 1: {
      if (t.is_scalar()) {
        os << "int";
        return;
      } else if (t.lanes() == 8) {
        os << "int8_t";
        return;
      } else if (t.lanes() == 16) {
        os << "int16_t";
        return;
      } else if (t.lanes() == 32) {
        os << "int";
        return;
      } else {
        LOG(FATAL) << "Cannot convert type " << t << " to CUDA type!";
298
      }
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
    }
    case 4: {
      if (t.is_scalar()) {
        os << "int";
        return;
      } else if (t.lanes() == 4) {
        os << "int16_t";
        return;
      } else if (t.lanes() == 8) {
        // directly 8 4-bit int in integer.
        os << "int";
        return;
      } else if (t.lanes() == 16) {
        os << "int2";
        return;
      } else if (t.lanes() == 32) {
        os << "int4";
        return;
      } else if (t.lanes() == 64) {
        os << "int8";
        return;
      } else {
        LOG(FATAL) << "Cannot convert type " << t << " to CUDA type!";
322
      }
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
    }
    case 8: {
      if (t.lanes() == 4) {
        // directly 4 8 bit int in integer.

        // We use int for int8x4 instead of char4 because using char4 is
        // likely to produce extra instructions to pack four int8 elements
        // into 32-bit data.
        os << "int";
        return;
      } else if (t.lanes() == 8) {
        os << "int2";
        return;
      } else if (t.lanes() == 16) {
        os << "int4";
        return;
      } else if (!t.is_uint() && t.is_scalar()) {
        os << "signed char";
341
        break;
342
343
      } else {
        os << "char";
344
345
        break;
      }
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
    }
    case 16: {
      if (t.is_scalar()) {
        os << "short";
      } else if (t.lanes() <= 4) {
        os << "short" << lanes;
      } else if (t.lanes() <= 8) {
        // Emit CUDA code to access int16 vector elements.
        //
        // short4 is stored as int2
        //
        // s4.x is emitted as *(short2*)(&(i2.x)).x
        // s4.y is emitted as *(short2*)(&(i2.x)).y
        // s4.z is emitted as *(short2*)(&(i2.y)).x
        // s4.w is emitted as *(short2*)(&(i2.y)).y
        //
        ICHECK_EQ(t.lanes() % 2, 0)
            << "only support even lane for shorT type with lanes > 4";
        os << "int" << t.lanes() / 2;
      } else {
        fail = true;
      }
      if (!fail) {
369
370
        return;
      }
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
      break;
    }
    case 32: {
      if (t.is_scalar()) {
        os << "int";
      } else if (t.lanes() <= 4) {
        os << "int" << t.lanes();
      } else if (t.lanes() <= 8) {
        // Emit CUDA code to access int32 vector elements for 4 < lanes <= 8.
        //
        // int8 is stored as longlong4
        //
        // i8.v1 is emitted as *(int2*)(&(l4.x)).x
        // i8.v2 is emitted as *(int2*)(&(l4.x)).y
        //
        ICHECK_EQ(lanes % 2, 0)
            << "only support even lane for int32 type with lanes > 4";
        os << "longlong" << lanes / 2;
      } else {
390
        fail = true;
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
      }
      if (!fail) {
        return;
      }
      break;
    }
    case 64: {
      if (t.is_scalar()) {
        os << "int64_t";
      } else if (t.lanes() == 2) {
        os << "longlong2";
      } else if (t.lanes() == 3) {
        os << "longlong3";
      } else if (t.lanes() == 4) {
        os << "longlong4";
      }
      return;
    }
    default:
      fail = true;
      break;
412
413
414
415
416
417
418
419
420
421
422
423
    }
    if (!fail && lanes == 1) {
      return;
    }
    if (!fail && (lanes >= 2 && lanes <= 4)) {
      os << lanes;
      return;
    }
  }
  LOG(FATAL) << "Cannot convert type " << t << " to CUDA type";
}

424
425
426
void CodeGenTileLangHIP::PrintVecBinaryOp(const std::string &op, DataType t,
                                          PrimExpr lhs, PrimExpr rhs,
                                          std::ostream &os) { // NOLINT(*)
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
  // Declare the result.
  std::string sret = name_supply_->FreshName("_");
  this->PrintIndent();
  this->PrintType(t, stream);
  stream << ' ' << sret << ";\n";
  int ssa_scope = BeginScope();
  {
    // Unpack into individual ops.
    std::string vlhs = SSAGetID(PrintExpr(lhs), lhs.dtype());
    std::string vrhs = SSAGetID(PrintExpr(rhs), rhs.dtype());

    for (int i = 0, lanes = t.lanes(); i < lanes; ++i) {
      std::ostringstream value_temp;
      if (isalpha(op[0])) {
        value_temp << op << "(";
        PrintVecElemLoad(vlhs, lhs.dtype(), i, value_temp);
        value_temp << ", ";
        PrintVecElemLoad(vrhs, rhs.dtype(), i, value_temp);
        value_temp << ")";
      } else {
        value_temp << "(";
        PrintVecElemLoad(vlhs, lhs.dtype(), i, value_temp);
        value_temp << op;
        PrintVecElemLoad(vrhs, rhs.dtype(), i, value_temp);
        value_temp << ")";
      }
      PrintVecElemStore(sret, t, i, value_temp.str());
    }
  }
  EndScope(ssa_scope);
  os << sret;
}

460
461
462
void CodeGenTileLangHIP::PrintVecElemLoad(const std::string &vec, DataType t,
                                          int i,
                                          std::ostream &os) { // NOLINT(*)
463
464
465
466
467
468
  if (t.is_scalar()) {
    os << vec;
    return;
  }

  static const char access[] = {'x', 'y', 'z', 'w'};
469
470
471
  ICHECK(i >= 0 && i < (t.bits() == 8                        ? 16
                        : (t.bits() == 16 || t.bits() == 32) ? 8
                                                             : 4));
472
473
474
475
476
477
478
479
480
  if (t.bits() == 8 && (t.is_int() || t.is_uint())) {
    std::string type_name = t.is_int() ? "char" : "unsigned char";
    if (t.lanes() == 2 || t.lanes() == 3) {
      os << vec << "." << access[i % t.lanes()];
    } else {
      std::string ac = t.lanes() == 4 ? vec : (vec + "." + access[i / 4]);
      os << "((" << type_name << ")(" << ac << " >> " << i % 4 * 8 << "))";
    }
  } else if (t.is_float16()) {
481
482
    os << "((half2*)(&(" << vec << "." << access[i / 2] << ")))->"
       << access[i % 2];
483
  } else if (t.is_bfloat16()) {
484
485
    os << "((nv_bfloat162*)(&(" << vec << "." << access[i / 2] << ")))->"
       << access[i % 2];
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
  } else if (t.lanes() > 4 && t.lanes() <= 8) {
    std::string type_name;
    if (t.bits() == 16) {
      if (t.is_int()) {
        type_name = "short";
      } else if (t.is_uint()) {
        type_name = "ushort";
      }
    } else if (t.bits() == 32) {
      if (t.is_int()) {
        type_name = "int";
      } else if (t.is_uint()) {
        type_name = "uint";
      } else if (t.is_float()) {
        type_name = "float";
      }
    }
    ICHECK(!type_name.empty());
504
505
    os << "((" << type_name << "2*)(&(" << vec << "." << access[i / 2]
       << ")))->" << access[i % 2];
506
507
508
509
510
  } else {
    os << vec << "." << access[i];
  }
}

511
512
void CodeGenTileLangHIP::PrintVecElemStore(const std::string &vec, DataType t,
                                           int i, const std::string &value) {
513
514
  this->PrintIndent();
  static const char access[] = {'x', 'y', 'z', 'w'};
515
516
517
  ICHECK(i >= 0 && i < (t.bits() == 8                        ? 16
                        : (t.bits() == 16 || t.bits() == 32) ? 8
                                                             : 4));
518
519
  if (t.bits() == 8 && (t.is_int() || t.is_uint())) {
    if (t.lanes() == 2 || t.lanes() == 3) {
520
521
      stream << vec << '.' << access[i % t.lanes()] << "="
             << "(" << value << ");\n";
522
523
524
525
526
527
528
529
530
531
    } else {
      std::string ac = t.lanes() == 4 ? vec : (vec + "." + access[i / 4]);
      stream << ac << "=";
      // Do not read the first undef lane.
      if (i != 0) {
        stream << ac << " & ~(0x000000ff << " << i % 4 * 8 << ") |";
      }
      stream << "(" << value << " << " << i % 4 * 8 << ");\n";
    }
  } else if (t.is_float16()) {
532
533
    stream << "*((half_t*)(&(((half2*)(&(" << vec << "." << access[i / 2]
           << ")))->" << access[i % 2] << "))) = " << value << ";\n";
534
  } else if (t.is_bfloat16()) {
535
536
    stream << "((bfloat16_t*)(&(" << vec << "." << access[i / 2] << ")))["
           << (i % 2) << "] = " << value << ";\n";
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
  } else if (t.lanes() > 4 && t.lanes() <= 8) {
    std::string type_name;
    if (t.bits() == 16) {
      if (t.is_int()) {
        type_name = "short";
      } else if (t.is_uint()) {
        type_name = "ushort";
      }
    } else if (t.bits() == 32) {
      if (t.is_int()) {
        type_name = "int";
      } else if (t.is_uint()) {
        type_name = "uint";
      } else if (t.is_float()) {
        type_name = "float";
      }
    }
    ICHECK(!type_name.empty());
555
556
    stream << "((" << type_name << "2*)(&(" << vec << "." << access[i / 2]
           << ")))->" << access[i % 2] << " = " << value << ";\n";
557
558
559
560
561
  } else {
    stream << vec << "." << access[i] << " = " << value << ";\n";
  }
}

562
563
void CodeGenTileLangHIP::PrintStorageSync(const CallNode *op) {
  const std::string &sync = op->args[0].as<StringImmNode>()->value;
564
565
566
567
568
569
570
571
  if (sync == "warp") {
    // DO nothing.
  } else if (sync == "shared" || sync == "shared.dyn") {
    this->PrintIndent();
    this->stream << "__syncthreads();\n";
  }
}

572
573
574
575
576
void CodeGenTileLangHIP::PrintStorageScope(const std::string &scope,
                                           std::ostream &os) { // NOLINT(*)
  ICHECK_NE(scope, "global")
      << "Cannot allocate global memory when targeting CUDA. You must pass "
         "all global arrays as input instead";
577
578
579
580
581
582
583
  if (scope == "shared") {
    os << "__shared__ ";
  } else if (scope == "shared.dyn") {
    os << "extern __shared__ __align__(1024) ";
  }
}

584
585
586
587
std::string CodeGenTileLangHIP::CastFromTo(std::string value, DataType from,
                                           DataType target) {
  if (from == target)
    return value;
588
589
590
591
  std::ostringstream os;
  os << "((";
  this->PrintType(target, os);
  os << ")";
592
593
  if (from.is_float16() && (target.is_int() || target.is_uint()) &&
      target.bits() == 8) {
594
595
596
597
598
599
600
601
602
603
    os << "(";
    if (target.is_uint()) {
      os << "u";
    }
    os << "int)";
  }
  os << value << ")";
  return os.str();
}

604
void CodeGenTileLangHIP::VisitExpr_(const CastNode *op, std::ostream &os) {
605
606
607
608
609
  DataType from_ty = op->value.dtype();
  DataType target_ty = op->dtype;
  ICHECK_EQ(target_ty.lanes(), from_ty.lanes());

  // Emit simple C-style type conversion.
610
611
  if (from_ty.is_scalar())
    return CodeGenC::VisitExpr_(op, os);
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633

  // We could emit make_float4 like calls, but the emitted code looks
  // too compact to read. Emit this as vectorized unary ops.
  std::string sret = name_supply_->FreshName("_");
  this->PrintIndent();
  this->PrintType(target_ty, stream);
  stream << ' ' << sret << ";\n";
  {
    std::string src = SSAGetID(PrintExpr(op->value), from_ty);
    for (int i = 0, lanes = from_ty.lanes(); i < lanes; ++i) {
      std::ostringstream val;
      val << "(";
      PrintType(target_ty.element_of(), val);
      val << ")(";
      PrintVecElemLoad(src, from_ty, i, val);
      val << ")";
      PrintVecElemStore(sret, target_ty, i, val.str());
    }
  }
  os << sret;
}

634
635
636
637
void CodeGenTileLangHIP::PrintCallExtern(Type ret_type, String global_symbol,
                                         const Array<PrimExpr> &args,
                                         bool skip_first_arg,
                                         std::ostream &os) { // NOLINT(*)
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
  DataType ret_dtype = GetRuntimeDataType(ret_type);
  if (ret_dtype.is_vector()) {
    //
    // Emit an unsupported vector call
    //
    // v = intrin_f((float4*)A[0], (float4*)B[0])
    //
    // as
    //
    // float4 __ret;
    // {
    //   float4 __arg0 = ((float4*)A)[0];
    //   float4 __arg1 = ((float4*)B)[0];
    //   __ret.x = intrin_f(__arg0.x, __arg1.x);
    //   __ret.y = intrin_f(__arg0.y, __arg1.y);
    //   __ret.z = intrin_f(__arg0.z, __arg1.z);
    //   __ret.w = intrin_f(__arg0.w, __arg1.w);
    // }
    // v = __ret;
    //
    // Declare the result vector.
    std::string sret = name_supply_->FreshName("_");
    this->PrintIndent();
    this->PrintType(ret_dtype, stream);
    stream << ' ' << sret << ";\n";
    {
      // Load arguments.
      std::vector<std::string> sargs;
      size_t arg_begin = static_cast<size_t>(skip_first_arg);
      for (size_t i = arg_begin; i < args.size(); ++i) {
        std::string val = SSAGetID(PrintExpr(args[i]), args[i].dtype());
        sargs.push_back(std::move(val));
      }

      // Emit a scalar call for each lane.
      for (int i = 0; i < ret_dtype.lanes(); ++i) {
        std::ostringstream scall;
        scall << global_symbol << "(";
        for (size_t j = 0; j < sargs.size(); ++j) {
677
678
          if (j > 0)
            scall << ", ";
679
680
681
682
683
684
685
686
          PrintVecElemLoad(sargs[j], args[arg_begin + j].dtype(), i, scall);
        }
        scall << ")";
        PrintVecElemStore(sret, ret_dtype, i, scall.str());
      }
    }
    os << sret;
  } else {
687
688
    CodeGenC::PrintCallExtern(ret_type, global_symbol, args, skip_first_arg,
                              os);
689
690
691
692
  }
}

// Print a reference expression to a buffer.
693
694
695
696
std::string CodeGenTileLangHIP::GetBufferRef(DataType t,
                                             const BufferNode *buffer,
                                             PrimExpr index) {
  const VarNode *buffer_var = buffer->data.get();
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
  std::ostringstream os;
  std::string vid = GetVarID(buffer_var);
  std::string scope;
  if (alloc_storage_scope_.count(buffer_var)) {
    scope = alloc_storage_scope_.at(buffer_var);
  }
  // bool is_vol = IsVolatile(buffer_var);
  // always false for tl cutlass backend.
  bool is_vol = false;

  auto ptr_cast = [this, is_vol, scope](DataType pointed_to) {
    std::ostringstream ptr_os;
    ptr_os << "(";
    if (is_vol) {
      ptr_os << "volatile ";
    }
    if (!scope.empty() && IsScopePartOfType()) {
      PrintStorageScope(scope, ptr_os);
    }
    PrintType(pointed_to, ptr_os);
    ptr_os << "*)";
    return ptr_os.str();
  };

  DataType buffer_element_dtype = buffer->dtype;

  std::string buffer_str = vid;
  if (!HandleTypeMatch(buffer_var, buffer_element_dtype) || is_vol) {
    std::stringstream temp;
    temp << "(" << ptr_cast(buffer_element_dtype) << vid << ")";
    buffer_str = temp.str();
  }

  std::string index_str = PrintExpr(index);
  if (t.bits() == 4 || (t.bits() == 1 && t.is_int())) {
    // This is a special case, because CodegenCUDA::PrintType()
    // returns "int" for bool and for 4-bit integers. In most cases,
    // we divide by the number of lanes to determine the index.
    // However, the backing type for scalar int4 and scalar bool is
    // int32.  Therefore, we need to divide by the ratio of their
    // sizes in that case.
    int div_factor = (t.lanes() == 1) ? (32 / t.bits()) : t.lanes();

    os << "*("
       << "(" << ptr_cast(t) << vid << ")"
       << " + " << index_str << " / " << div_factor << ")";
  } else if (t == buffer_element_dtype) {
    os << buffer_str << "[" << index_str << "]";
  } else {
    os << "*" << ptr_cast(t) << "(" << buffer_str << " + " << index_str << ")";
  }

  return os.str();
}

752
void CodeGenTileLangHIP::VisitExpr_(const CallNode *op, std::ostream &os) {
753
754
755
756
  auto print_extern_call_stmt = [&](std::string name, size_t offset = 0) {
    this->PrintIndent();
    this->stream << name << "(";
    for (size_t i = offset; i < op->args.size(); i++) {
757
758
      if (i > offset)
        this->stream << ", ";
759
760
761
762
763
764
765
766
767
768
      this->stream << this->PrintExpr(op->args[i]);
    }
    this->stream << ");\n";
  };
  if (op->op.same_as(builtin::ptx_cp_async())) {
    std::string dst = this->PrintExpr(op->args[0]);
    std::string dst_offset = this->PrintExpr(op->args[1]);
    std::string src = this->PrintExpr(op->args[2]);
    std::string src_offset = this->PrintExpr(op->args[3]);
    std::string size = this->PrintExpr(op->args[4]);
769
770
    // use size of argument list to indicate whether or not to use predicated
    // cp.async
771
772
    if (op->args.size() == 5) {
      this->PrintIndent();
773
774
      this->stream << "tl::cp_async_gs<" << size << ">(" << dst << "+"
                   << dst_offset << ", " << src << "+" << src_offset << ");\n";
775
776
777
    } else {
      std::string condition = this->PrintExpr(op->args[5]);
      this->PrintIndent();
778
779
780
      this->stream << "tl::cp_async_gs_conditional<" << size << ">(" << dst
                   << "+" << dst_offset << ", " << src << "+" << src_offset
                   << ", " << condition << ");\n";
781
782
783
784
785
786
787
788
789
790
791
    }
  } else if (op->op.same_as(builtin::ptx_commit_group())) {
    print_extern_call_stmt("tl::cp_async_commit");
  } else if (op->op.same_as(builtin::ptx_wait_group())) {
    int n = Downcast<IntImm>(op->args[0])->value;
    std::string func_name = "tl::cp_async_wait<" + std::to_string(n) + ">";
    print_extern_call_stmt(func_name, 1);
  } else if (op->op.same_as(builtin::create_barriers())) {
    this->PrintIndent();
    int barrier_count = Downcast<IntImm>(op->args[0])->value;
    std::string barrier_name = "_mbarrier";
792
793
    this->stream << "__shared__ uint64_t " << barrier_name << "["
                 << barrier_count << "];\n";
794
  } else if (op->op.same_as(tl::get_mbarrier())) {
795
796
797
798
799
800
801
802
803
804
805
    std::string barrier_name = "_mbarrier";
    std::string barrier_id = this->PrintExpr(op->args[0]);
    os << barrier_name + "[" + barrier_id + "]";
  } else if (op->op.same_as(builtin::ptx_arrive_barrier())) {
    print_extern_call_stmt("tl::mbarrier_arrive");
  } else if (op->op.same_as(builtin::ptx_init_barrier_thread_count())) {
    print_extern_call_stmt("tl::mbarrier_init");
  } else if (op->op.same_as(builtin::ptx_arrive_barrier_expect_tx())) {
    print_extern_call_stmt("tl::mbarrier_arrive_expect_tx");
  } else if (op->op.same_as(builtin::ptx_cp_async_barrier())) {
    print_extern_call_stmt("tl::mbarrier_cp_async_arrive");
806
  } else if (op->op.same_as(tl::mbarrier_expect_tx())) {
807
    print_extern_call_stmt("tl::mbarrier_expect_tx");
808
  } else if (op->op.same_as(tl::mbarrier_wait_parity())) {
809
    print_extern_call_stmt("tl::mbarrier_wait");
810
  } else if (op->op.same_as(tl::sync_thread_partial())) {
811
    print_extern_call_stmt("tl::syncthreads_partial");
812
  } else if (op->op.same_as(tl::ptx_stmatirx())) {
813
814
815
    int trans = Downcast<IntImm>(op->args[0])->value;
    int num = Downcast<IntImm>(op->args[1])->value;
    std::string func_name = "tl::ptx_stmatrix_x" + std::to_string(num);
816
817
    if (trans == 1)
      func_name += "_trans";
818
    print_extern_call_stmt(func_name, 2);
819
  } else if (op->op.same_as(tl::wait_wgmma())) {
820
821
822
    this->PrintIndent();
    int num_mma = Downcast<IntImm>(op->args[0])->value;
    this->stream << "tl::wait_wgmma<" << std::to_string(num_mma) << ">();\n";
823
  } else if (op->op.same_as(tl::pack_b16())) {
824
825
    os << "__pack_half2(" << this->PrintExpr(op->args[0]) << ", "
       << this->PrintExpr(op->args[1]) << ")";
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
  } else if (op->op.same_as(builtin::tvm_fill_fragment())) {
    need_mma_h_ = true;
    ICHECK_EQ(op->args.size(), 6U);
    os << "nvcuda::wmma::fill_fragment(";
    this->PrintExpr(op->args[0], os);
    os << "[";
    this->PrintExpr(op->args[4], os);
    os << "], ";
    this->PrintExpr(op->args[5], os);
    os << ")";
  } else if (op->op.same_as(builtin::tvm_load_matrix_sync())) {
    need_mma_h_ = true;
    ICHECK_EQ(op->args.size(), 8U);
    os << "nvcuda::wmma::load_matrix_sync(";
    this->PrintExpr(op->args[0], os);
    os << "[";
    this->PrintExpr(op->args[4], os);
    os << "], ";
    this->PrintExpr(op->args[5], os);
    os << ", ";
    this->PrintExpr(op->args[6], os);
    os << ")";
  } else if (op->op.same_as(builtin::tvm_store_matrix_sync())) {
    need_mma_h_ = true;
    ICHECK_EQ(op->args.size(), 8U);
    os << "nvcuda::wmma::store_matrix_sync(";
    this->PrintExpr(op->args[5], os);
    os << ", ";
    this->PrintExpr(op->args[0], os);
    os << "[";
    this->PrintExpr(op->args[4], os);
    os << "], ";
    this->PrintExpr(op->args[6], os);
859
    if (const StringImmNode *str = op->args[7].as<StringImmNode>()) {
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
      os << ", nvcuda::wmma::mem_" << str->value;
    } else {
      LOG(FATAL) << "Invalid parameters";
    }
    os << ")";
  } else if (op->op.same_as(builtin::tvm_mma_sync())) {
    need_mma_h_ = true;
    ICHECK_EQ(op->args.size(), 8U);
    os << "nvcuda::wmma::mma_sync(";
    for (int i = 0; i < 4; ++i) {
      this->PrintExpr(op->args[i * 2], os);
      os << "[";
      this->PrintExpr(op->args[i * 2 + 1], os);
      os << "]" << ((i < 3) ? ", " : ")");
    }
  } else if (op->op.same_as(builtin::tvm_bmma_sync())) {
    need_mma_h_ = true;
    ICHECK_EQ(op->args.size(), 8U);
    os << "nvcuda::wmma::bmma_sync(";
    for (int i = 0; i < 4; ++i) {
      this->PrintExpr(op->args[i * 2], os);
      os << "[";
      this->PrintExpr(op->args[i * 2 + 1], os);
      os << "]" << ((i < 3) ? ", " : ")");
    }
885
  } else if (op->op.same_as(tl::tvm_mfma())) {
886
887
888
889
890
891
892
893
894
895
896
897
898
    // arg 0: prefix: {otype}_16x16x16{itype}
    // arg 1: A layout: row/col
    // arg 2: B layout: row/col
    // arg 3: A precision: float16, float32, ...
    // arg 4: B precision: float16, float32, ...
    // arg 5: C precision: float32, float64, ...
    // arg 6: A multiplicand
    // arg 7: A multiplicand index
    // arg 8: B multiplicand
    // arg 9: B multiplicand index
    // arg 10: C accumulator
    // arg 11: C accumulator index

899
900
    ICHECK(op->args.size() == 12U)
        << "Invalid number of arguments for tvm_mfma";
901
902
903
904
905
906
907
908
909
910
911
912
    std::string prefix = Downcast<StringImm>(op->args[0])->value;
    std::string A_layout = Downcast<StringImm>(op->args[1])->value;
    std::string B_layout = Downcast<StringImm>(op->args[2])->value;
    std::string A_dtype = Downcast<StringImm>(op->args[3])->value;
    std::string B_dtype = Downcast<StringImm>(op->args[4])->value;
    std::string C_dtype = Downcast<StringImm>(op->args[5])->value;
    std::string a_ref = this->PrintExpr(op->args[6]);
    std::string a_bias = this->PrintExpr(op->args[7]);
    std::string b_ref = this->PrintExpr(op->args[8]);
    std::string b_bias = this->PrintExpr(op->args[9]);
    std::string c_ref = this->PrintExpr(op->args[10]);
    std::string c_bias = this->PrintExpr(op->args[11]);
913
914
    ICHECK(A_layout == "row" || B_layout == "row")
        << "Matrix core only support row major";
915
916
917
918
919
920
921
922
923
924
925
926
    // map for dtype -> float32x4 -> float4
    std::unordered_map<std::string, std::string> dtype_map = {
        {"int8", "char"},
        {"int32", "int"},
        {"int8x4", "int32_t"},
        {"int32x4", "int32x4"},
        {"float16", "half"},
        {"float32", "float"},
        {"float64", "double"},
        {"float16x4", "float16x4"},
        {"bfloat16x4", "bfloat16x4"},
        {"float32x4", "float32x4"},
927
928
        {"float8_e4m3fnuzx4", "fp8_e4_4_t"},
        {"float8_e4m3fnuzx8", "long"},
929
        {"float32x16", "float32x16"}};
930
931
932
933
934
935
936
    std::string call_mfma_code = R"({
    *((({C_dytpe}*){c_ref}) + {c_bias}) = {mfma_buildin}(*((({A_dytpe}*){a_ref}) + {a_bias}),
                  *((({B_dytpe}*){b_ref}) + {b_bias}),
                  *((({C_dytpe}*){c_ref}) + {c_bias}), 0, 0, 0);
  })";
    std::string mfma_buildin = "__builtin_amdgcn_mfma_" + prefix;
    Replacer replacer;
937

938
939
940
941
942
943
944
945
946
947
948
    replacer.register_rule("{mfma_buildin}", mfma_buildin);
    replacer.register_rule("{A_dytpe}", dtype_map[A_dtype]);
    replacer.register_rule("{B_dytpe}", dtype_map[B_dtype]);
    replacer.register_rule("{C_dytpe}", dtype_map[C_dtype]);
    replacer.register_rule("{a_ref}", a_ref);
    replacer.register_rule("{a_bias}", a_bias);
    replacer.register_rule("{b_ref}", b_ref);
    replacer.register_rule("{b_bias}", b_bias);
    replacer.register_rule("{c_ref}", c_ref);
    replacer.register_rule("{c_bias}", c_bias);
    os << replacer.rewrite(call_mfma_code);
949
950
951
952
953
954
955
956
957
958
959
  } else if (op->op.same_as(builtin::thread_return())) {
    os << "return";
  } else if (op->op.same_as(tl::tl_gemm())) {
    ICHECK(op->args.size() == 4) << "tl_gemm expects 4 arguments <op_instance, "
                                    "A_ptr, B_ptr, C_ptr>, but got "
                                 << op->args.size();
    auto op_instance = Downcast<StringImm>(op->args[0]);
    this->PrintCallExtern(GetType(GetRef<PrimExpr>(op)), op_instance->value,
                          op->args, true, os);
  } else if (op->op.same_as(tl::tl_gemm_sp())) {
    LOG(FATAL) << "tl_gemm_sp is not supported on HIP";
960
  } else {
961
962
963
964
    CodeGenC::VisitExpr_(op, os);
  }
}

965
void CodeGenTileLangHIP::VisitStmt_(const AttrStmtNode *op) {
966
  if (op->attr_key == tir::attr::async_commit_queue_scope) {
967
968
969
    const IntImmNode *queue_id = op->value.as<IntImmNode>();
    ICHECK(queue_id && queue_id->value == 0)
        << "For CUDA, the index of an async queue must be 0.";
970
971
972
973
974
975
976
    this->VisitStmt(op->body);
    auto commit_group = Call(DataType::Void(), builtin::ptx_commit_group(), {});
    this->VisitExpr(commit_group, this->stream);
    return;
  } else if (op->attr_key == tir::attr::async_wait_queue_scope) {
    auto wait_attrs = GetAsyncWaitAttributes(op);
    auto queue_id = wait_attrs.first.as<IntImmNode>();
977
978
    ICHECK(queue_id && queue_id->value == 0)
        << "For CUDA, the index of an async queue must be 0.";
979
    auto wait_cnt = wait_attrs.second;
980
981
    auto wait_group =
        Call(DataType::Void(), builtin::ptx_wait_group(), {wait_cnt});
982
983
984
985
986
987
988
    this->VisitExpr(wait_group, this->stream);
    auto inner = op->body.as<AttrStmtNode>();
    ICHECK(inner);
    this->VisitStmt(inner->body);
    return;
  } else if (op->attr_key == "threadblock_swizzle_pattern") {
    this->PrintIndent();
989
    const StringImmNode *pattern = op->value.as<StringImmNode>();
990
991
992
993
994
995
996
997
    ICHECK(pattern);
    this->stream << "const dim3 blockIdx = " << pattern->value << "();\n";
    this->VisitStmt(op->body);
    return;
  }
  CodeGenC::VisitStmt_(op);
}

998
void CodeGenTileLangHIP::VisitStmt_(const AllocateNode *op) {
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
  ICHECK(!is_zero(op->condition));
  std::string vid = AllocVarID(op->buffer_var.get());

  this->PrintIndent();
  std::string scope = GetPtrStorageScope(op->buffer_var);
  PrintStorageScope(scope, stream);
  PrintType(op->dtype, stream);

  if (scope == "shared.dyn") {
    stream << ' ' << vid << "[];\n";
  } else {
    size_t constant_size = op->ConstantAllocationSize();
1011
1012
    ICHECK_GT(constant_size, 0)
        << "Can only handle constant size stack allocation for now";
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

    if ((op->dtype == DataType::Int(4) || op->dtype == DataType::UInt(4) ||
         op->dtype == DataType::Int(1)) &&
        scope == "shared") {
      constant_size = constant_size / (32 / op->dtype.bits());
    }
    stream << ' ' << vid << '[' << constant_size << "];\n";
  }

  RegisterHandleType(op->buffer_var.get(), op->dtype);
  this->PrintStmt(op->body);
}

1026
void CodeGenTileLangHIP::VisitExpr_(const RampNode *op, std::ostream &os) {
1027
1028
1029
1030
1031
1032
1033
1034
  int lanes = static_cast<int>(Downcast<IntImm>(op->lanes)->value);
  CHECK_LE(lanes, 4) << "ValueError: Ramp of more than 4 lanes is not allowed.";
  os << "(make_";
  PrintType(op->dtype, os);
  os << "(";
  for (int i = 0; i < lanes; i++) {
    os << "(" << PrintExpr(op->base) << ")"
       << "+(" << PrintExpr(op->stride) << "*" << i << ")";
1035
1036
    if (i != lanes - 1)
      os << ", ";
1037
1038
1039
1040
  }
  os << "))";
}

1041
1042
void CodeGenTileLangHIP::VisitExpr_(const BroadcastNode *op,
                                    std::ostream &os) { // NOLINT(*)
1043
  int lanes = static_cast<int>(Downcast<IntImm>(op->lanes)->value);
1044
1045
  if ((op->dtype.is_int() || op->dtype.is_uint()) && op->dtype.bits() == 8 &&
      lanes == 4) {
1046
    // make_int8x4
1047
    const int64_t *p = as_const_int(op->value);
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
    ICHECK(p);
    int64_t v = *p & 0xFF;
    v = (v << 24) | (v << 16) | (v << 8) | v;
    if (op->dtype.is_uint()) {
      os << "(uint)" << v;
    } else {
      os << "(int)" << v;
    }
    return;
  }

  if (op->dtype.is_float16()) {
    std::string v = PrintExpr(op->value);
    os << "make_";
    PrintType(op->dtype, os);
    os << '(';
    for (int i = 0; i < lanes / 2; ++i) {
1065
1066
      if (i != 0)
        os << ", ";
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
      os << "__pack_half2(" << v << ", " << v << ")";
    }
    os << ')';
    return;
  }

  if (op->dtype.is_bfloat16()) {
    std::string v = PrintExpr(op->value);
    os << "make_";
    PrintType(op->dtype, os);
    os << '(';
    for (int i = 0; i < lanes / 2; ++i) {
1079
1080
      if (i != 0)
        os << ", ";
1081
      os << "__pack_bfloat162(" << v << ", " << v << ")";
1082
1083
1084
1085
1086
    }
    os << ')';
    return;
  }

1087
1088
  if (op->dtype.is_float() && op->dtype.bits() == 32 &&
      op->dtype.lanes() == 8) {
1089
1090
1091
    std::string v = PrintExpr(op->value);
    os << "make_ulonglong4(";
    for (int i = 0; i < 4; ++i) {
1092
1093
      if (i != 0)
        os << ", ";
1094
1095
1096
1097
1098
1099
1100
1101
      os << "*(unsigned long long*)&make_float2(" << v << ", " << v << ")";
    }
    os << ')';
    return;
  }

  if ((op->dtype.is_int() || op->dtype.is_uint()) && op->dtype.bits() == 4) {
    bool fail = false;
1102
    const int64_t *p = as_const_int(op->value);
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
    ICHECK(p);
    int64_t v = *p & 0xF;

    if (lanes == 4) {
      v = (v << 12) | (v << 8) | (v << 4) | v;
      if (op->dtype.is_uint()) {
        os << "(uint16_t)" << v;
      } else {
        os << "(int16_t)" << v;
      }
    } else {
1114
1115
      v = (v << 28) | (v << 24) | (v << 20) | (v << 16) | (v << 12) | (v << 8) |
          (v << 4) | v;
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
      if (lanes == 8) {
        if (op->dtype.is_uint()) {
          os << "(uint)" << v;
        } else {
          os << "(int)" << v;
        }
      } else if (lanes == 16 || lanes == 32) {
        os << "make_";
        PrintType(op->dtype, os);
        os << '(';
        for (int i = 0; i < lanes / 8; ++i) {
1127
1128
          if (i != 0)
            os << ", ";
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
          if (op->dtype.is_uint()) {
            os << "(uint)" << v;
          } else {
            os << "(int)" << v;
          }
        }
        os << ')';
      } else {
        fail = true;
      }
    }

    if (!fail) {
      return;
    }
  }

  std::string v = PrintExpr(op->value);
  os << "make_";
  PrintType(op->dtype, os);
  os << '(';
  for (int i = 0; i < lanes; ++i) {
1151
1152
    if (i != 0)
      os << ", ";
1153
1154
1155
1156
1157
    os << v;
  }
  os << ')';
}

1158
1159
inline void PrintConst(const FloatImmNode *op, std::ostream &os,
                       CodeGenTileLangHIP *p) { // NOLINT(*)
1160
1161
1162
1163
1164
  // Type code is kBFloat
  if (op->dtype.is_bfloat16()) {
    os << "bfloat16_t";
    os << '(' << std::scientific << op->value << 'f' << ')';
    return;
1165
1166
1167
1168
  } else if (op->dtype.is_float8_e4m3fnuz()) {
    os << "fp8_e4_t";
    os << '(' << std::scientific << op->value << 'f' << ')';
    return;
1169
1170
1171
  }
  // Type code is kFloat
  switch (op->dtype.bits()) {
1172
1173
1174
1175
1176
1177
  case 64:
  case 32: {
    std::ostringstream temp;
    if (std::isinf(op->value)) {
      if (op->value < 0) {
        temp << "-";
1178
      }
1179
1180
1181
1182
1183
1184
1185
      temp << ((op->dtype.bits() == 32) ? "HIPRT_INF_F" : "HIPRT_INF");
    } else if (std::isnan(op->value)) {
      temp << ((op->dtype.bits() == 32) ? "HIPRT_NAN_F" : "HIPRT_NAN");
    } else {
      temp << std::scientific << op->value;
      if (op->dtype.bits() == 32)
        temp << 'f';
1186
    }
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
    p->MarkConst(temp.str());
    os << temp.str();
    break;
  }
  case 16: {
    os << "half_t" << '(';
    FloatImm const_f32 = FloatImm(DataType::Float(32), op->value);
    PrintConst(const_f32.get(), os, p);
    os << ')';
    break;
  }
  default:
    LOG(FATAL) << "Bad bit-width for float: " << op->dtype << "\n";
1200
1201
1202
  }
}

1203
1204
void CodeGenTileLangHIP::VisitExpr_(const FloatImmNode *op,
                                    std::ostream &os) { // NOLINT(*)
1205
1206
1207
  PrintConst(op, os, this);
}

1208
1209
1210
void CodeGenTileLangHIP::HandleVolatileLoads(const std::string &value,
                                             const BufferLoadNode *op,
                                             std::ostream &os) {
1211
1212
1213
  // Cast away volatile qualifier for fp16 types. That is, only loads and
  // stores are volatile. The loaded objects are not marked as volatile.
  //
1214
1215
  if ((op->dtype.is_float16() || op->dtype.is_bfloat16()) &&
      IsVolatile(op->buffer->data.get())) {
1216
1217
1218
1219
1220
1221
1222
1223
    os << "(";
    PrintType(op->dtype, os);
    os << ")(" << value << ")";
  } else {
    os << value;
  }
}

1224
1225
1226
void CodeGenTileLangHIP::PrintVecElemLoadExpr(DataType t, int i,
                                              const std::string &value,
                                              std::ostream &os) {
1227
1228
1229
1230
1231
1232
  ICHECK_GT(t.lanes(), 1);
  if (t.bits() == 8 && (t.is_int() || t.is_uint())) {
    if (!(t.lanes() == 2 || t.lanes() == 3)) {
      if (i != 0) {
        os << "|";
      }
1233
1234
      os << "((0x000000ff << " << i * 8 << ") & (" << value << " << " << i * 8
         << "))";
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
      return;
    }
  }

  if (t.is_float16()) {
    if (i == 0) {
      os << "make_";
      PrintType(t, os);
      os << '(';
    }
    if (i % 2 == 0) {
      os << "__pack_half2(" << value;
    } else {
      os << "," << value << ")";
      if (i != t.lanes() - 1) {
        os << ",";
      } else {
        os << ")";
      }
    }
    return;
  }

  if (t.is_bfloat16()) {
    if (i == 0) {
      os << "make_";
      PrintType(t, os);
      os << '(';
    }
    if (i % 2 == 0) {
      os << "__pack_bfloat162(" << value;
    } else {
      os << "," << value << ")";
      if (i != t.lanes() - 1) {
        os << ",";
      } else {
        os << ")";
      }
    }
    return;
  }

  if (i == 0) {
    os << "make_";
    PrintType(t, os);
    os << "(";
  }
  os << value;
  if (i != t.lanes() - 1) {
    os << ",";
  } else {
    os << ")";
  }
  return;
}

1291
void CodeGenTileLangHIP::AddFunction(const PrimFunc &f) {
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
  // clear previous generated state.
  this->InitFuncState(f);
  // reserve keywords
  ReserveKeywordsAsUnique();

  auto global_symbol = f->GetAttr<String>(tvm::attr::kGlobalSymbol);
  ICHECK(global_symbol.defined())
      << "CodeGenC: Expect PrimFunc to have the global_symbol attribute";
  bool no_alias = f->HasNonzeroAttr(tir::attr::kNoAlias);

  this->PrintFuncPrefix(stream);
  CodeGenC::PrintType(f->ret_type, stream);
  this->PrintExtraAttrs(f, stream);
  this->stream << " " << static_cast<std::string>(global_symbol.value()) << "(";

  for (size_t i = 0; i < f->params.size(); ++i) {
    tir::Var v = f->params[i];
    std::string vid = AllocVarID(v.get());
1310
1311
    if (i != 0)
      stream << ", ";
1312
1313
    if (v.dtype().is_handle()) {
      // work around for grid constant parameters.
1314
      if (auto *ptr = v->type_annotation.as<PointerTypeNode>()) {
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
        if (ptr->storage_scope == "grid_constant") {
          stream << "__grid_constant__ const ";
          CodeGenC::PrintType(ptr->element_type, stream);
          stream << ' ' << vid;
          continue;
        }
      }

      auto it = alloc_storage_scope_.find(v.get());
      if (it != alloc_storage_scope_.end()) {
        PrintStorageScope(it->second, stream);
      }

      CodeGenC::PrintType(GetType(v), stream);
1329
1330
      if (auto *ptr = v->type_annotation.as<PointerTypeNode>()) {
        if (auto *prim = ptr->element_type.as<PrimTypeNode>()) {
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
          RegisterHandleType(v.get(), prim->dtype);
        }
      }

      if (no_alias) {
        PrintRestrict(v, stream);
      }
    } else {
      CodeGenC::PrintType(GetType(v), stream);
    }
    stream << ' ' << vid;
  }
  stream << ") {\n";
  this->PreFunctionBody(f);
  int func_scope = this->BeginScope();
  this->PrintStmt(f->body);
  this->EndScope(func_scope);
  this->PrintIndent();
  this->stream << "}\n\n";
}

1352
1353
} // namespace codegen
} // namespace tvm