"vscode:/vscode.git/clone" did not exist on "f34eb488dd7de0006f48e9039c1ca51fbd2a6783"
arg_binder.cc 30.6 KB
Newer Older
1
2
3
4
5
6
7
/*!
 * \file arg_binder.cc
 * \brief Helper utility to match and bind arguments.
 */
#include "arg_binder.h"

#include <tvm/runtime/device_api.h>
8
#include <tvm/tir/analysis.h>
9
10
11
12
13
#include <tvm/tir/builtin.h>
#include <tvm/tir/expr.h>
#include <tvm/tir/op.h>

#include <sstream>
14
#include <unordered_set>
15

16
#include "../runtime/error_helpers.h"
17
#include "tir/transforms/ir_utils.h"
18
19
20
21
22
#include "tvm/arith/int_solver.h"
#include "tvm/ffi/cast.h"
#include "tvm/ffi/container/array.h"
#include "tvm/tir/stmt.h"
#include "tvm/tir/stmt_functor.h"
23
24
25
26
27
28
29

namespace tvm {
namespace tl {

using namespace tir;

void BinderAddAssert(arith::Analyzer *ana, PrimExpr cond,
30
31
                     const std::string &arg_name, std::vector<Stmt> *asserts,
                     PrimExpr nullable_guard = PrimExpr()) {
32
33
34
35
36
  PrimExpr scond = ana->Simplify(cond);
  if (is_zero(scond)) {
    LOG(FATAL) << "Bind have an unmet assertion: " << cond << ", "
               << " on argument " << arg_name;
  }
37

38
  if (!is_one(scond)) {
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
    // Extract kernel/buffer/field from arg_name (e.g., "main.A.shape[0]")
    std::string kernel = arg_name;
    std::string buf_and_field = arg_name;
    size_t dot_pos = arg_name.find('.');
    if (dot_pos != std::string::npos) {
      kernel = arg_name.substr(0, dot_pos);
      buf_and_field = arg_name.substr(dot_pos + 1);
    }
    std::string buffer = buf_and_field;
    std::string field;
    size_t dot2 = buf_and_field.find('.');
    if (dot2 != std::string::npos) {
      buffer = buf_and_field.substr(0, dot2);
      field = buf_and_field.substr(dot2 + 1);
    }

    // If cond is an equality, prefer structured packed error with expect/got
    if (const auto *eq = scond.as<tvm::tir::EQNode>()) {
      PrimExpr lhs = eq->a;
      PrimExpr rhs = eq->b;
      // Choose rhs as expected and lhs as got for better semantics in most
      // binding cases
      ffi::Array<PrimExpr> pargs;
      pargs.push_back(StringImm(tvm_error_expect_eq));
      pargs.push_back(StringImm(kernel));
      pargs.push_back(StringImm(buffer));
      pargs.push_back(StringImm(field.empty() ? std::string("value") : field));
      pargs.push_back(cast(DataType::Int(64), rhs)); // expected
      pargs.push_back(cast(DataType::Int(64), lhs)); // got

      Stmt call_err =
          Evaluate(Call(DataType::Int(32), builtin::tvm_call_packed(), pargs));
      // Only emit at runtime when the equality fails
      Stmt inner = IfThenElse(Not(scond), call_err);
      if (nullable_guard.defined()) {
        inner = IfThenElse(Not(nullable_guard), inner);
      }
      asserts->emplace_back(SeqStmt({inner, Evaluate(0)}));
77
    } else {
78
79
80
81
82
83
84
85
86
87
88
89
90
      // Fallback: packed generic constraint violation without dumping cond
      ffi::Array<PrimExpr> pargs;
      pargs.push_back(StringImm(tvm_error_constraint_violation));
      pargs.push_back(StringImm(kernel));
      pargs.push_back(StringImm(buffer));
      pargs.push_back(StringImm(field.empty() ? std::string("value") : field));
      Stmt call_err =
          Evaluate(Call(DataType::Int(32), builtin::tvm_call_packed(), pargs));
      Stmt inner = IfThenElse(Not(scond), call_err);
      if (nullable_guard.defined()) {
        inner = IfThenElse(Not(nullable_guard), inner);
      }
      asserts->emplace_back(SeqStmt({inner, Evaluate(0)}));
91
    }
92
93
94
  }
}

95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
std::vector<Var> ArgBinder::getUndefVars(const std::vector<PrimExpr> &args) {
  std::unordered_set<const VarNode *> visit;
  std::vector<Var> res;
  for (const auto &arg : args) {
    PostOrderVisit(arg, [&](ObjectRef r) {
      if (auto var = r.as<VarNode>()) {
        if (!visit.count(var)) {
          visit.insert(var);
        }
        auto it = def_map_->find(var);
        if (it == def_map_->end()) {
          // res.push_back(var);
          res.push_back(ffi::GetRef<Var>(var));
        }
      }
    });
  }
  return res;
}

115
116
117
118
119
120
121
122
123
124
bool ArgBinder::BindNullable(const PrimExpr &arg, const PrimExpr &value,
                             const std::string &arg_name, bool with_lets,
                             const PrimExpr &nullable_guard) {
  // Currently only used in BindDLTensor, nullable_guard is already a defined
  // bool, so use it directly.
  auto MakeGuarded = [&](PrimExpr basic) -> PrimExpr {
    // is_null || basic
    return Or(nullable_guard, basic);
  };
  ICHECK_EQ(arg.dtype(), value.dtype()) << "arg " << arg << " value " << value;
125
126
127
128
129
130
131
132
133
134
135
  auto BindVar = [&](const VarNode *v, PrimExpr value) {
    auto v_arg = ffi::GetRef<Var>(v);
    defs_.emplace_back(v_arg);
    if (with_lets) {
      (*def_map_)[v] = value;
      init_nest_.emplace_back(LetStmt(v_arg, value, Evaluate(0)));
    } else {
      (*def_map_)[v] = value;
    }
  };
  // 1. simple binding var = value
136
137
138
  if (const VarNode *v = arg.as<VarNode>()) {
    auto it = def_map_->find(v);
    if (it == def_map_->end()) {
139
      BindVar(v, value);
140
141
142
143
      // First time binding: identical behavior as Bind_
      return true;
    } else {
      // Second or later binding: add is_null short-circuit
144
145
      PrimExpr cond = value == it->second;
      BinderAddAssert(&analyzer_, cond, arg_name, &asserts_, nullable_guard);
146
147
    }
  } else {
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
    // 2. complex binding expr = value
    //  get undefined variables
    auto undefs = ffi::Array<Var>(getUndefVars({arg}));
    if (!undefs.empty()) {
      // if value is not integer, such as float, we are unable to solve it
      if (!value.dtype().is_int() && !value.dtype().is_uint()) {
        LOG(FATAL) << "Unable to solve non-integer variables " << undefs
                   << " from equation `" << value << "`";
      }
      arith::IntConstraints constraints(undefs, {}, {arg == value});
      auto sol = arith::SolveLinearEquations(constraints);
      if (!sol->dst->variables.empty()) {
        LOG(FATAL) << "TVM is unable to solve variables " << undefs
                   << " from equation " << constraints;
      }
      for (const auto &v : undefs) {
        auto value_opt = sol->src_to_dst.Get(v);
        ICHECK(value_opt->defined())
            << "Unable to solve variable `" << v << "` from expression `"
167
            << (value == arg) << "`";
168
169
170
171
172
173
174
175
        auto value = ffi::GetRef<PrimExpr>(sol->src_to_dst.Get(v)->get());
        BindVar(v.as<VarNode>(), value);
      }
    }
    // we must add the assert again
    //    because the solved expression may contain floordiv (e.g. 3 * m == n
    //    ==>   m = n // 3) we re-compute the constraint to verify the solution
    //    is correct
176
177
    PrimExpr cond = value == arg;
    BinderAddAssert(&analyzer_, cond, arg_name, &asserts_, nullable_guard);
178
  }
179
  // ICHECK(false);
180
181
182
  return false;
}

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
bool ArgBinder::Bind_(const PrimExpr &arg, const PrimExpr &value,
                      const std::string &arg_name, bool with_lets) {
  ICHECK_EQ(arg.dtype(), value.dtype()) << "arg " << arg << " value " << value;
  if (const VarNode *v = arg.as<VarNode>()) {
    auto it = def_map_->find(v);
    if (it == def_map_->end()) {
      Var v_arg = Downcast<Var>(arg);
      defs_.emplace_back(v_arg);
      if (with_lets) {
        (*def_map_)[v] = arg;
        init_nest_.emplace_back(LetStmt(v_arg, value, Evaluate(0)));
      } else {
        (*def_map_)[v] = value;
      }
      return true;
    } else {
199
      BinderAddAssert(&analyzer_, value == it->second, arg_name, &asserts_);
200
201
    }
  } else {
202
    BinderAddAssert(&analyzer_, value == arg, arg_name, &asserts_);
203
204
205
206
207
208
209
210
211
  }
  return false;
}

void ArgBinder::Bind(const PrimExpr &arg, const PrimExpr &value,
                     const std::string &arg_name, bool with_let) {
  Bind_(arg, value, arg_name, with_let);
}

212
213
void ArgBinder::BindArray(const ffi::Array<PrimExpr> &arg,
                          const ffi::Array<PrimExpr> &value,
214
215
216
217
218
219
220
221
222
223
224
225
226
227
                          const std::string &arg_name) {
  ICHECK_EQ(arg.size(), value.size())
      << "Argument " << arg_name << " array size mismatch";
  for (size_t i = 0; i < arg.size(); ++i) {
    std::ostringstream os;
    os << arg_name << "[" << i << "]";
    this->Bind(arg[i], value[i], os.str());
  }
}

void ArgBinder::BindBuffer(const Buffer &arg, const Buffer &value,
                           const std::string &arg_name, bool fuzzy_match) {
  ICHECK_EQ(arg.scope(), value.scope())
      << "Argument " << arg_name << " Buffer bind scope mismatch";
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
  // Relax dtype check to allow FP8 E4M3 variants to bind together.
  auto dtype_compatible = [](DataType expected, DataType provided) -> bool {
    if (expected == provided)
      return true;
    // If expected is float8_e4m3, allow float8_e4m3fn/float8_e4m3fnuz as well.
    if (expected.is_float8_e4m3()) {
      return provided.is_float8_e4m3() || provided.is_float8_e4m3fn() ||
             provided.is_float8_e4m3fnuz();
    }
    // If expected is float8_e5m2, allow float8_e5m2fnuz as well.
    if (expected.is_float8_e5m2()) {
      return provided.is_float8_e5m2() || provided.is_float8_e5m2fnuz();
    }
    // If expected is bool, allow binding from int8/uint8 with same lanes.
    if (expected.is_bool()) {
      bool is_i8 = provided.is_int() && provided.bits() == 8;
      bool is_u8 = provided.is_uint() && provided.bits() == 8;
      return (is_i8 || is_u8) && expected.lanes() == provided.lanes();
    }
    return false;
  };
  ICHECK(dtype_compatible(arg->dtype, value->dtype))
      << "Argument " << arg_name << " Buffer bind data type mismatch: expected "
      << arg->dtype << ", got " << value->dtype;
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
  if (value->data_alignment % arg->data_alignment != 0) {
    LOG(WARNING) << "Trying to bind buffer to another one with lower alignment "
                    "requirement "
                 << " required_alignment=" << arg->data_alignment
                 << ", provided_alignment=" << value->data_alignment;
  }

  if (value->elem_offset.defined()) {
    // bind pointer and offset.
    if (is_zero(arg->elem_offset)) {
      ICHECK(is_zero(value->elem_offset))
          << "Trying to bind a Buffer with offset into one without offset "
          << " required elem_offset=" << arg->elem_offset
          << ", provided elem_offset=" << value->elem_offset;
    }

    this->Bind(arg->data, value->data, arg_name + ".data");
    if (Bind_(arg->elem_offset, value->elem_offset, arg_name + ".elem_offset",
              false)) {
      if (arg->offset_factor > 1) {
        PrimExpr offset = value->elem_offset;
        PrimExpr factor = make_const(offset.dtype(), arg->offset_factor);
        PrimExpr zero = make_zero(offset.dtype());
275
        BinderAddAssert(&analyzer_, zero == truncmod(offset, factor),
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
                        arg_name + ".elem_offset", &asserts_);
      }
    }
  }

  if (arg->shape.size() < value->shape.size()) {
    ICHECK(fuzzy_match) << "Argument " << arg_name << " size mismatch";
    size_t diff = value->shape.size() - arg->shape.size();
    for (size_t i = 0; i < diff; ++i) {
      ICHECK(is_one(analyzer_.Simplify(value->shape[i])))
          << "Argument " << arg_name << " shape mismatch" << arg->shape
          << " vs " << value->shape;
    }
    for (size_t i = 0; i < arg->shape.size(); ++i) {
      std::ostringstream os;
      os << arg_name << ".shape[" << i << "]";
      this->Bind(arg->shape[i], value->shape[i + diff], os.str());
    }
    if (!value->strides.empty()) {
      ICHECK_EQ(arg->strides.size(), arg->shape.size());
      ICHECK_EQ(value->strides.size(), value->shape.size());
      for (size_t i = 0; i < arg->strides.size(); ++i) {
        std::ostringstream os;
        os << arg_name << ".strides[" << i << "]";
        this->Bind(arg->strides[i], value->strides[i + diff], os.str());
      }
    }
  } else {
    this->BindArray(arg->shape, value->shape, arg_name + ".shape");
    this->BindArray(arg->strides, value->strides, arg_name + ".strides");
  }
}

inline PrimExpr TVMArrayGet(DataType t, Var arr,
                            builtin::TVMStructFieldKind kind) {
  return TVMStructGet(t, arr, 0, kind);
}

void ArgBinder::BindDLTensor(const Buffer &buffer, const PrimExpr &device_type,
                             const PrimExpr &device_id, const Var &handle,
316
                             const std::string &arg_name, bool is_used) {
317
318
319
320
  const DataType tvm_shape_type = DataType::ShapeIndex();
  const DataType tvm_ndim_type = DataType::Int(32);
  const Stmt nop = Evaluate(0);

321
322
323
324
  // Allow NULL DLTensor* for optional inputs.  When the handle is NULL,
  // avoid dereferencing it by using expression-level conditionals and
  // short-circuiting guards in asserts. Cache the null check in a Let-bound
  // boolean so codegen does not repeat `(handle == NULL)` everywhere.
325

326
327
328
329
  Var is_null_var(arg_name + "_is_null", DataType::Bool());
  init_nest_.emplace_back(
      LetStmt(is_null_var,
              Call(DataType::Bool(), builtin::isnullptr(), {handle}), nop));
330
331
332
333
334
335
336
  const PrimExpr &is_null = is_used ? const_false() : is_null_var;
  if (is_used) {
    init_nest_.emplace_back(AssertStmt(
        !is_null_var,
        tvm::tir::StringImm(arg_name + " is expected to have non-NULL pointer"),
        nop));
  }
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357

  // dimension checks
  PrimExpr v_ndim = TVMArrayGet(tvm_ndim_type, handle, builtin::kArrNDim);

  // Helper functions for shape/stride name formatting
  auto shape_handle_name = [&]() { return arg_name + ".shape"; };
  auto stride_handle_name = [&]() { return arg_name + ".strides"; };
  auto array_element_name = [&](const std::string &arr_name, size_t k) {
    std::stringstream ss;
    ss << arr_name << '[' << k << ']';
    return ss.str();
  };
  auto shape_element_name = [&](size_t k) {
    return array_element_name(shape_handle_name(), k);
  };
  auto stride_element_name = [&](size_t k) {
    return array_element_name(stride_handle_name(), k);
  };

  PrimExpr a_ndim =
      make_const(tvm_ndim_type, static_cast<int64_t>(buffer->shape.size()));
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
  // Build clearer ndim message with kernel/buffer names
  std::string kernel_nm = arg_name;
  std::string buf_nm = arg_name;
  size_t dot_pos = arg_name.find('.');
  if (dot_pos != std::string::npos) {
    kernel_nm = arg_name.substr(0, dot_pos);
    buf_nm = arg_name.substr(dot_pos + 1);
  }
  // Only check ndim when handle is non-NULL: use packed error helper
  PrimExpr ndim_ok = (a_ndim == v_ndim);
  ffi::Array<PrimExpr> ndim_args;
  ndim_args.push_back(StringImm(tvm_error_ndim_mismatch));
  ndim_args.push_back(StringImm(kernel_nm));
  ndim_args.push_back(StringImm(buf_nm));
  ndim_args.push_back(cast(DataType::Int(64), a_ndim));
  ndim_args.push_back(cast(DataType::Int(64), v_ndim));
  Stmt ndim_call =
      Evaluate(Call(DataType::Int(32), builtin::tvm_call_packed(), ndim_args));
  init_nest_.emplace_back(
      SeqStmt({IfThenElse(Not(is_null), IfThenElse(Not(ndim_ok), ndim_call),
                          Evaluate(0)),
               nop}));
380
  // type checks
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
  // Guard all dtype field loads by `is_null` using if_then_else
  PrimExpr v_type_code = tvm::if_then_else(
      Not(is_null),
      TVMArrayGet(DataType::UInt(8), handle, builtin::kArrTypeCode),
      IntImm(DataType::UInt(8), buffer->dtype.code()));
  PrimExpr v_type_bits = tvm::if_then_else(
      Not(is_null),
      TVMArrayGet(DataType::UInt(8), handle, builtin::kArrTypeBits),
      IntImm(DataType::UInt(8), buffer->dtype.bits()));
  PrimExpr v_type_lanes = tvm::if_then_else(
      Not(is_null),
      TVMArrayGet(DataType::UInt(16), handle, builtin::kArrTypeLanes),
      IntImm(DataType::UInt(16), buffer->dtype.lanes()));
  PrimExpr expect_code = IntImm(DataType::UInt(8), buffer->dtype.code());
  PrimExpr expect_bits = IntImm(DataType::UInt(8), buffer->dtype.bits());
  PrimExpr expect_lanes = IntImm(DataType::UInt(16), buffer->dtype.lanes());

  PrimExpr cond = (v_type_code == expect_code && v_type_bits == expect_bits &&
                   v_type_lanes == expect_lanes);

  // Allow float8_e4m3 to match float8_e4m3fn/float8_e4m3fnuz at runtime.
  if (buffer->dtype.is_float8_e4m3()) {
    PrimExpr code_e4m3 = IntImm(DataType::UInt(8), DataType::kFloat8_e4m3);
    PrimExpr code_e4m3fn = IntImm(DataType::UInt(8), DataType::kFloat8_e4m3fn);
    PrimExpr code_e4m3fnuz =
        IntImm(DataType::UInt(8), DataType::kFloat8_e4m3fnuz);
    PrimExpr code_match =
        (v_type_code == code_e4m3 || v_type_code == code_e4m3fn ||
         v_type_code == code_e4m3fnuz);
    cond = cond || (code_match && v_type_bits == expect_bits &&
                    v_type_lanes == expect_lanes);
  }
  // Allow float8_e5m2 to match float8_e5m2fnuz at runtime.
  if (buffer->dtype.is_float8_e5m2()) {
    PrimExpr code_e5m2 = IntImm(DataType::UInt(8), DataType::kFloat8_e5m2);
    PrimExpr code_e5m2fnuz =
        IntImm(DataType::UInt(8), DataType::kFloat8_e5m2fnuz);
    PrimExpr code_match =
        (v_type_code == code_e5m2 || v_type_code == code_e5m2fnuz);
    cond = cond || (code_match && v_type_bits == expect_bits &&
                    v_type_lanes == expect_lanes);
  }
  // Allow bool to match int8/uint8 at runtime, and also kDLBool(code=6).
  if (buffer->dtype.is_bool()) {
    PrimExpr code_int = IntImm(DataType::UInt(8), DataType::kInt);
    PrimExpr code_uint = IntImm(DataType::UInt(8), DataType::kUInt);
    PrimExpr code_kdlbool = IntImm(DataType::UInt(8), 6);
    PrimExpr bits8 = IntImm(DataType::UInt(8), 8);
    PrimExpr bits1 = IntImm(DataType::UInt(8), 1);
    PrimExpr lanes_ok = (v_type_lanes == expect_lanes);
    PrimExpr int8_ok =
        (v_type_code == code_int && v_type_bits == bits8 && lanes_ok);
    PrimExpr uint8_ok =
        (v_type_code == code_uint && v_type_bits == bits8 && lanes_ok);
    // Some frontends may tag bool tensors as kDLBool(code=6), commonly with
    // bits=8 or bits=1.
    PrimExpr kdlbool8_ok =
        (v_type_code == code_kdlbool && v_type_bits == bits8 && lanes_ok);
    PrimExpr kdlbool1_ok =
        (v_type_code == code_kdlbool && v_type_bits == bits1 && lanes_ok);
    // Also accept any dtype whose bitwidth=1, regardless of code, to be
    // defensive.
    PrimExpr bit1_ok = (v_type_bits == bits1 && lanes_ok);
    cond = cond || int8_ok || uint8_ok || kdlbool8_ok || kdlbool1_ok || bit1_ok;
  }
446
447
448
449
450
451
452
453
454
455
456
457
  // Allow float4 to match int8 at runtime (PyTorch uses int8 as storage for
  // FP4).
  if (buffer->dtype.is_float4()) {
    PrimExpr code_int = IntImm(DataType::UInt(8), DataType::kInt);
    PrimExpr bits8 = IntImm(DataType::UInt(8), 8);
    // For FP4, we pack 2 elements per byte, but we still use same lanes at
    // storage level Accept int8 with same lanes as the fp4 type
    PrimExpr fp4_lanes_ok = (v_type_lanes == expect_lanes);
    PrimExpr int8_ok =
        (v_type_code == code_int && v_type_bits == bits8 && fp4_lanes_ok);
    cond = cond || int8_ok;
  }
458
459
  if (!(buffer->dtype == DataType::Int(1) ||
        buffer->dtype == DataType::Int(4) ||
460
        buffer->dtype == DataType::UInt(4) || buffer->dtype.is_float4())) {
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
    // Build FFI packed call to __tvm_error_dtype_mismatch when mismatch occurs.
    // Only issue the call when handle is non-NULL and cond is false.
    ffi::Array<PrimExpr> packed_args;
    packed_args.push_back(StringImm(tvm_error_dtype_mismatch));
    // Split arg_name of the form "<kernel>.<buffer>" into parts for clearer
    // diagnostics
    std::string kernel_name = arg_name;
    std::string buffer_name = arg_name;
    size_t dot_pos = arg_name.find('.');
    if (dot_pos != std::string::npos) {
      kernel_name = arg_name.substr(0, dot_pos);
      buffer_name = arg_name.substr(dot_pos + 1);
    }
    packed_args.push_back(StringImm(kernel_name));
    packed_args.push_back(StringImm(buffer_name));

    auto i64 = DataType::Int(64);
    // Cast to int64 for FFI function signature
    packed_args.push_back(cast(i64, v_type_code));  // actual_code
    packed_args.push_back(cast(i64, v_type_bits));  // actual_bits
    packed_args.push_back(cast(i64, v_type_lanes)); // actual_lanes
    packed_args.push_back(cast(i64, expect_code));  // expect_code
    packed_args.push_back(cast(i64, expect_bits));  // expect_bits
    packed_args.push_back(cast(i64, expect_lanes)); // expect_lanes

    Stmt call_err = Evaluate(
        Call(DataType::Int(32), builtin::tvm_call_packed(), packed_args));
    // Guard the call: only when handle is not null and cond fails
    Stmt guarded = IfThenElse(Not(is_null) && Not(cond), call_err);
    asserts_.emplace_back(SeqStmt({guarded, nop}));
491
492
493
494
495
496
497
498
  }

  // shape field
  Buffer buf_shape =
      decl_buffer({IntImm(DataType::Int(32), buffer->shape.size())},
                  tvm_shape_type, shape_handle_name());
  Var v_shape(shape_handle_name(), DataType::Handle());
  def_handle_dtype_.Set(v_shape, make_const(tvm_shape_type, 0));
499
500
501
502
503
504
505
506
507
  // Use if_then_else for NULL guard on the shape pointer itself, avoiding
  // dereferencing TVMStructGet(handle, kArrShape) when handle is NULL.
  init_nest_.emplace_back(
      LetStmt(buf_shape->data,
              tvm::if_then_else(
                  Not(is_null),
                  TVMArrayGet(DataType::Handle(), handle, builtin::kArrShape),
                  make_zero(DataType::Handle())),
              nop));
508
  init_nest_.emplace_back(DeclBuffer(buf_shape, nop));
509

510
  for (size_t k = 0; k < buffer->shape.size(); ++k) {
511
512
    // These packed-bit dtype shapes were not bound in the original
    // implementation, so we just use them as is.
513
514
515
516
517
    if (buffer->dtype == DataType::Int(4) ||
        buffer->dtype == DataType::UInt(4) ||
        buffer->dtype == DataType::Int(1)) {
      break;
    }
518
519

    // The "real" runtime shape value read from DLTensor
520
    PrimExpr shape_val =
521
522
523
524
525
526
527
        cast(buffer->shape[k].dtype(),
             BufferLoad(buf_shape,
                        {IntImm(DataType::Int(32), static_cast<int>(k))}));

    // When first encountering a Var (e.g., m), this will generate:
    //   Let(m, bound_shape_val, ...)
    // Constant dimensions will only generate consistency assertions.
528
    BindNullable(buffer->shape[k], shape_val, shape_element_name(k), true,
529
                 is_null);
530
  }
531

532
533
534
535
536
  // strides field
  Buffer buf_strides =
      decl_buffer({IntImm(DataType::Int(32), buffer->strides.size())},
                  tvm_shape_type, arg_name + ".strides");
  def_handle_dtype_.Set(buf_strides->data, tir::TypeAnnotation(tvm_shape_type));
537
538
539
540
541
542
543
  init_nest_.emplace_back(
      LetStmt(buf_strides->data,
              tvm::if_then_else(
                  Not(is_null),
                  TVMArrayGet(DataType::Handle(), handle, builtin::kArrStrides),
                  make_zero(DataType::Handle())),
              nop));
544
545
546
  init_nest_.emplace_back(DeclBuffer(buf_strides, nop));
  PrimExpr v_strides_is_null =
      Call(DataType::Bool(1), builtin::isnullptr(), {buf_strides->data});
547

548
549
550
551
  if (buffer->strides.empty()) {
    // Assert the buffer is compact
    DataType stype = buffer->DefaultIndexType();
    PrimExpr expect_stride = make_const(stype, 1);
552
    ffi::Array<PrimExpr> conds;
553
554
    for (size_t i = buffer->shape.size(); i != 0; --i) {
      size_t k = i - 1;
555
556
557
      PrimExpr svalue = cast(
          stype, BufferLoad(buf_strides,
                            {IntImm(DataType::Int(32), static_cast<int>(k))}));
558
559
560
561
      conds.push_back(buffer->shape[k] == 1 || expect_stride == svalue);
      expect_stride = expect_stride * buffer->shape[k];
    }
    std::ostringstream stride_err_msg;
562
563
564
    stride_err_msg
        << stride_handle_name()
        << ": expected to be compact array, but got non-compact strides";
565
    if (!conds.empty()) {
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
      PrimExpr all_ok = foldl([](PrimExpr a, PrimExpr b,
                                 Span span) { return logical_and(a, b, span); },
                              const_true(1), conds);
      // Packed generic violation for non-compact strides
      std::string kernel_nm3 = arg_name;
      std::string buf_nm3 = arg_name;
      size_t dot_pos3 = arg_name.find('.');
      if (dot_pos3 != std::string::npos) {
        kernel_nm3 = arg_name.substr(0, dot_pos3);
        buf_nm3 = arg_name.substr(dot_pos3 + 1);
      }
      ffi::Array<PrimExpr> pargs4;
      pargs4.push_back(StringImm(tvm_error_constraint_violation));
      pargs4.push_back(StringImm(kernel_nm3));
      pargs4.push_back(StringImm(buf_nm3));
      pargs4.push_back(StringImm("strides"));
      Stmt call_err4 =
          Evaluate(Call(DataType::Int(32), builtin::tvm_call_packed(), pargs4));
      // Only check when strides array is present and condition fails
      Stmt check = IfThenElse(Not(v_strides_is_null),
                              IfThenElse(Not(all_ok), call_err4), Evaluate(0));
587
588
589
      asserts_.emplace_back(SeqStmt({check, Evaluate(0)}));
    }
  } else if (buffer->buffer_type == kAutoBroadcast) {
590
    PrimExpr stride_from_shape = 1;
591
592
593
594
595
    for (size_t i = buffer->shape.size(); i != 0; --i) {
      size_t k = i - 1;
      DataType stride_dtype = buffer->strides[k].dtype();
      PrimExpr explicit_stride =
          cast(stride_dtype,
596
597
598
               BufferLoad(buf_strides,
                          {IntImm(DataType::Int(32), static_cast<int>(k))}));

599
600
      PrimExpr stride_val = tvm::if_then_else(
          v_strides_is_null, stride_from_shape, explicit_stride);
601

602
603
      BindNullable(buffer->strides[k], stride_val, stride_element_name(k), true,
                   is_null);
604
605
    }
  } else {
606
    PrimExpr stride_from_shape = 1;
607

608
    for (int k = static_cast<int>(buffer->strides.size()) - 1; k >= 0; --k) {
609
610
611
612
613
614
      DataType stride_dtype = buffer->strides[k].dtype();
      PrimExpr explicit_stride =
          cast(stride_dtype,
               BufferLoad(buf_strides, {IntImm(DataType::Int(32), k)}));
      PrimExpr shape_stride = cast(
          stride_dtype, BufferLoad(buf_shape, {IntImm(DataType::Int(32), k)}));
615

616
617
      PrimExpr stride_val = tvm::if_then_else(
          v_strides_is_null, stride_from_shape, explicit_stride);
618

619
620
      BindNullable(buffer->strides[k], stride_val, stride_element_name(k), true,
                   is_null);
621
622
    }
  }
623

624
625
626
627
  // Byte_offset field.
  int data_bytes = GetVectorBytes(buffer->dtype);

  if (const auto *const_offset = buffer->elem_offset.as<IntImmNode>()) {
628
629
630
631
632
633
634
635
    // Constant elem_offset: only need consistency check, no need for additional
    // Var binding.
    PrimExpr actual_byte_offset = tvm::if_then_else(
        Not(is_null),
        TVMArrayGet(DataType::UInt(64), handle, builtin::kArrByteOffset),
        make_const(DataType::UInt(64), 0));
    PrimExpr expect_byte_offset =
        make_const(DataType::UInt(64), const_offset->value * data_bytes);
636
637
638
639
640
641
642
643
644
645
646
647
    PrimExpr ok = (expect_byte_offset == actual_byte_offset);
    ffi::Array<PrimExpr> pargs;
    pargs.push_back(StringImm(tvm_error_byte_offset_mismatch));
    pargs.push_back(StringImm(kernel_nm));
    pargs.push_back(StringImm(buf_nm));
    pargs.push_back(cast(DataType::Int(64), expect_byte_offset));
    pargs.push_back(cast(DataType::Int(64), actual_byte_offset));
    Stmt call_err =
        Evaluate(Call(DataType::Int(32), builtin::tvm_call_packed(), pargs));
    asserts_.emplace_back(SeqStmt(
        {IfThenElse(Not(is_null), IfThenElse(Not(ok), call_err), Evaluate(0)),
         nop}));
648
  } else {
649
650
651
652
653
654
655
656
    PrimExpr actual_byte_offset = tvm::if_then_else(
        Not(is_null),
        TVMArrayGet(DataType::UInt(64), handle, builtin::kArrByteOffset),
        make_const(DataType::UInt(64), 0));
    PrimExpr expect_elem_off =
        cast(buffer->elem_offset.dtype(),
             (actual_byte_offset / make_const(DataType::UInt(64), data_bytes)));

657
658
    BindNullable(buffer->elem_offset, expect_elem_off,
                 arg_name + ".elem_offset", true, is_null);
659
660
661
662
663

    if (buffer->offset_factor > 1) {
      PrimExpr offset = buffer->elem_offset;
      PrimExpr factor = make_const(offset.dtype(), buffer->offset_factor);
      PrimExpr zero = make_zero(offset.dtype());
664
665
      BindNullable(offset, truncmod(offset, factor), arg_name + ".elem_offset",
                   true, is_null);
666
667
    }
  }
668

669
  // device info.
670
671
672
673
674
675
676
677
678
  // Define device_id from handle when available (so later passes can use it)
  PrimExpr actual_dev_type = tvm::if_then_else(
      Not(is_null),
      TVMArrayGet(DataType::Int(32), handle, builtin::kArrDeviceType),
      make_zero(DataType::Int(32)));
  PrimExpr actual_dev_id = tvm::if_then_else(
      Not(is_null),
      TVMArrayGet(DataType::Int(32), handle, builtin::kArrDeviceId),
      make_zero(DataType::Int(32)));
679

680
681
682
683
684
  // Bind device_id to a safe expression (0 when NULL handle)
  BindNullable(device_id, actual_dev_id, arg_name + ".device_id", true,
               is_null);
  // Check device_type consistency (device_id equality is implicitly ensured by
  // binding above)
685
  {
686
687
688
689
690
691
692
693
694
695
696
697
    PrimExpr ok = (device_type == actual_dev_type);
    ffi::Array<PrimExpr> pargs2;
    pargs2.push_back(StringImm(tvm_error_device_type_mismatch));
    pargs2.push_back(StringImm(kernel_nm));
    pargs2.push_back(StringImm(buf_nm));
    pargs2.push_back(cast(DataType::Int(64), device_type));
    pargs2.push_back(cast(DataType::Int(64), actual_dev_type));
    Stmt call_err2 =
        Evaluate(Call(DataType::Int(32), builtin::tvm_call_packed(), pargs2));
    asserts_.emplace_back(SeqStmt(
        {IfThenElse(Not(is_null), IfThenElse(Not(ok), call_err2), Evaluate(0)),
         Evaluate(0)}));
698
  }
699
700
701
702

  // Data field.  Because the validation of the data field may depend
  // on a dynamic size defined by the other DLTensor* parameters, this
  // field must be generated last.
703
704
  // Bind data pointer using expression-level guard to avoid deref on NULL.
  {
705
    Var vptr(buffer->data);
706
707
708
709
710
    PrimExpr data_ptr = tvm::if_then_else(
        Not(is_null),
        TVMArrayGet(DataType::Handle(), handle, builtin::kArrData),
        make_zero(DataType::Handle()));
    BindNullable(buffer->data, data_ptr, arg_name + ".data", true, is_null);
711
712

    // Check if the data pointer is NULL.  This check is skipped for
713
    // size-0 arrays and also skipped when handle itself is NULL.
714
715
    auto alloc_size = [&]() -> PrimExpr {
      PrimExpr product = IntImm(buffer->DefaultIndexType(), 1);
716
      for (const auto &dim : buffer->shape)
717
718
719
        product *= dim;
      return product;
    }();
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
    // Improve message: kernel/buffer naming for data pointer null check
    std::string kernel_nm2 = arg_name;
    std::string buf_nm2 = arg_name;
    size_t dot_pos2 = arg_name.find('.');
    if (dot_pos2 != std::string::npos) {
      kernel_nm2 = arg_name.substr(0, dot_pos2);
      buf_nm2 = arg_name.substr(dot_pos2 + 1);
    }
    // expand combined condition via nested IfThenElse for portability
    ffi::Array<PrimExpr> pargs3;
    pargs3.push_back(StringImm(tvm_error_null_ptr));
    pargs3.push_back(StringImm(kernel_nm2));
    pargs3.push_back(StringImm(buf_nm2));
    pargs3.push_back(StringImm("data pointer"));
    Stmt call_err3 =
        Evaluate(Call(DataType::Int(32), builtin::tvm_call_packed(), pargs3));
    asserts_.emplace_back(SeqStmt(
        {IfThenElse(Not(is_null),
                    IfThenElse(Not(alloc_size == 0),
                               IfThenElse(Call(DataType::Bool(),
                                               builtin::isnullptr(), {vptr}),
                                          call_err3),
                               Evaluate(0)),
                    Evaluate(0)),
         nop}));
745
746
747
748
749

    // mark alignment of external bufs
    init_nest_.emplace_back(
        AttrStmt(vptr, tir::attr::storage_alignment,
                 IntImm(DataType::Int(32), buffer->data_alignment), nop));
750
751

    def_handle_dtype_.Set(vptr, tir::TypeAnnotation(buffer->dtype));
752
753
754
755
756
  }
}

} // namespace tl
} // namespace tvm