arg_binder.cc 25.7 KB
Newer Older
1
2
3
4
5
6
7
/*!
 * \file arg_binder.cc
 * \brief Helper utility to match and bind arguments.
 */
#include "arg_binder.h"

#include <tvm/runtime/device_api.h>
8
#include <tvm/tir/analysis.h>
9
10
11
12
13
#include <tvm/tir/builtin.h>
#include <tvm/tir/expr.h>
#include <tvm/tir/op.h>

#include <sstream>
14
#include <unordered_set>
15
16

#include "tir/transforms/ir_utils.h"
17
18
19
20
21
#include "tvm/arith/int_solver.h"
#include "tvm/ffi/cast.h"
#include "tvm/ffi/container/array.h"
#include "tvm/tir/stmt.h"
#include "tvm/tir/stmt_functor.h"
22
23
24
25
26
27
28

namespace tvm {
namespace tl {

using namespace tir;

void BinderAddAssert(arith::Analyzer *ana, PrimExpr cond,
29
30
                     const std::string &arg_name, std::vector<Stmt> *asserts,
                     PrimExpr nullable_guard = PrimExpr()) {
31
32
33
34
35
  PrimExpr scond = ana->Simplify(cond);
  if (is_zero(scond)) {
    LOG(FATAL) << "Bind have an unmet assertion: " << cond << ", "
               << " on argument " << arg_name;
  }
36

37
38
39
  if (!is_one(scond)) {
    std::ostringstream os;
    os << "Argument " << arg_name << " has an unsatisfied constraint: " << cond;
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

    // Check if the condition is of the form "is_null || actual_cond"
    // If so, generate "if !is_null: assert actual_cond" instead of "assert
    // is_null || actual_cond"
    if (nullable_guard.defined()) {
      // Pattern: nullable_guard || actual_condition
      // We want to transform this into: if !nullable_guard: assert
      // actual_condition
      Stmt check = AssertStmt(scond, StringImm(os.str()), Evaluate(0));
      check = IfThenElse(Not(nullable_guard), check);
      asserts->emplace_back(SeqStmt({check, Evaluate(0)}));
    } else {
      asserts->emplace_back(
          AssertStmt(scond, StringImm(os.str()), Evaluate(0)));
    }
55
56
57
  }
}

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
std::vector<Var> ArgBinder::getUndefVars(const std::vector<PrimExpr> &args) {
  std::unordered_set<const VarNode *> visit;
  std::vector<Var> res;
  for (const auto &arg : args) {
    PostOrderVisit(arg, [&](ObjectRef r) {
      if (auto var = r.as<VarNode>()) {
        if (!visit.count(var)) {
          visit.insert(var);
        }
        auto it = def_map_->find(var);
        if (it == def_map_->end()) {
          // res.push_back(var);
          res.push_back(ffi::GetRef<Var>(var));
        }
      }
    });
  }
  return res;
}

78
79
80
81
82
83
84
85
86
87
bool ArgBinder::BindNullable(const PrimExpr &arg, const PrimExpr &value,
                             const std::string &arg_name, bool with_lets,
                             const PrimExpr &nullable_guard) {
  // Currently only used in BindDLTensor, nullable_guard is already a defined
  // bool, so use it directly.
  auto MakeGuarded = [&](PrimExpr basic) -> PrimExpr {
    // is_null || basic
    return Or(nullable_guard, basic);
  };
  ICHECK_EQ(arg.dtype(), value.dtype()) << "arg " << arg << " value " << value;
88
89
90
91
92
93
94
95
96
97
98
  auto BindVar = [&](const VarNode *v, PrimExpr value) {
    auto v_arg = ffi::GetRef<Var>(v);
    defs_.emplace_back(v_arg);
    if (with_lets) {
      (*def_map_)[v] = value;
      init_nest_.emplace_back(LetStmt(v_arg, value, Evaluate(0)));
    } else {
      (*def_map_)[v] = value;
    }
  };
  // 1. simple binding var = value
99
100
101
  if (const VarNode *v = arg.as<VarNode>()) {
    auto it = def_map_->find(v);
    if (it == def_map_->end()) {
102
      BindVar(v, value);
103
104
105
106
      // First time binding: identical behavior as Bind_
      return true;
    } else {
      // Second or later binding: add is_null short-circuit
107
108
      PrimExpr cond = value == it->second;
      BinderAddAssert(&analyzer_, cond, arg_name, &asserts_, nullable_guard);
109
110
    }
  } else {
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
    // 2. complex binding expr = value
    //  get undefined variables
    auto undefs = ffi::Array<Var>(getUndefVars({arg}));
    if (!undefs.empty()) {
      // if value is not integer, such as float, we are unable to solve it
      if (!value.dtype().is_int() && !value.dtype().is_uint()) {
        LOG(FATAL) << "Unable to solve non-integer variables " << undefs
                   << " from equation `" << value << "`";
      }
      arith::IntConstraints constraints(undefs, {}, {arg == value});
      auto sol = arith::SolveLinearEquations(constraints);
      if (!sol->dst->variables.empty()) {
        LOG(FATAL) << "TVM is unable to solve variables " << undefs
                   << " from equation " << constraints;
      }
      for (const auto &v : undefs) {
        auto value_opt = sol->src_to_dst.Get(v);
        ICHECK(value_opt->defined())
            << "Unable to solve variable `" << v << "` from expression `"
130
            << (value == arg) << "`";
131
132
133
134
135
136
137
138
        auto value = ffi::GetRef<PrimExpr>(sol->src_to_dst.Get(v)->get());
        BindVar(v.as<VarNode>(), value);
      }
    }
    // we must add the assert again
    //    because the solved expression may contain floordiv (e.g. 3 * m == n
    //    ==>   m = n // 3) we re-compute the constraint to verify the solution
    //    is correct
139
140
    PrimExpr cond = value == arg;
    BinderAddAssert(&analyzer_, cond, arg_name, &asserts_, nullable_guard);
141
  }
142
  // ICHECK(false);
143
144
145
  return false;
}

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
bool ArgBinder::Bind_(const PrimExpr &arg, const PrimExpr &value,
                      const std::string &arg_name, bool with_lets) {
  ICHECK_EQ(arg.dtype(), value.dtype()) << "arg " << arg << " value " << value;
  if (const VarNode *v = arg.as<VarNode>()) {
    auto it = def_map_->find(v);
    if (it == def_map_->end()) {
      Var v_arg = Downcast<Var>(arg);
      defs_.emplace_back(v_arg);
      if (with_lets) {
        (*def_map_)[v] = arg;
        init_nest_.emplace_back(LetStmt(v_arg, value, Evaluate(0)));
      } else {
        (*def_map_)[v] = value;
      }
      return true;
    } else {
162
      BinderAddAssert(&analyzer_, value == it->second, arg_name, &asserts_);
163
164
    }
  } else {
165
    BinderAddAssert(&analyzer_, value == arg, arg_name, &asserts_);
166
167
168
169
170
171
172
173
174
  }
  return false;
}

void ArgBinder::Bind(const PrimExpr &arg, const PrimExpr &value,
                     const std::string &arg_name, bool with_let) {
  Bind_(arg, value, arg_name, with_let);
}

175
176
void ArgBinder::BindArray(const ffi::Array<PrimExpr> &arg,
                          const ffi::Array<PrimExpr> &value,
177
178
179
180
181
182
183
184
185
186
187
188
189
190
                          const std::string &arg_name) {
  ICHECK_EQ(arg.size(), value.size())
      << "Argument " << arg_name << " array size mismatch";
  for (size_t i = 0; i < arg.size(); ++i) {
    std::ostringstream os;
    os << arg_name << "[" << i << "]";
    this->Bind(arg[i], value[i], os.str());
  }
}

void ArgBinder::BindBuffer(const Buffer &arg, const Buffer &value,
                           const std::string &arg_name, bool fuzzy_match) {
  ICHECK_EQ(arg.scope(), value.scope())
      << "Argument " << arg_name << " Buffer bind scope mismatch";
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
  // Relax dtype check to allow FP8 E4M3 variants to bind together.
  auto dtype_compatible = [](DataType expected, DataType provided) -> bool {
    if (expected == provided)
      return true;
    // If expected is float8_e4m3, allow float8_e4m3fn/float8_e4m3fnuz as well.
    if (expected.is_float8_e4m3()) {
      return provided.is_float8_e4m3() || provided.is_float8_e4m3fn() ||
             provided.is_float8_e4m3fnuz();
    }
    // If expected is float8_e5m2, allow float8_e5m2fnuz as well.
    if (expected.is_float8_e5m2()) {
      return provided.is_float8_e5m2() || provided.is_float8_e5m2fnuz();
    }
    // If expected is bool, allow binding from int8/uint8 with same lanes.
    if (expected.is_bool()) {
      bool is_i8 = provided.is_int() && provided.bits() == 8;
      bool is_u8 = provided.is_uint() && provided.bits() == 8;
      return (is_i8 || is_u8) && expected.lanes() == provided.lanes();
    }
    return false;
  };
  ICHECK(dtype_compatible(arg->dtype, value->dtype))
      << "Argument " << arg_name << " Buffer bind data type mismatch: expected "
      << arg->dtype << ", got " << value->dtype;
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
  if (value->data_alignment % arg->data_alignment != 0) {
    LOG(WARNING) << "Trying to bind buffer to another one with lower alignment "
                    "requirement "
                 << " required_alignment=" << arg->data_alignment
                 << ", provided_alignment=" << value->data_alignment;
  }

  if (value->elem_offset.defined()) {
    // bind pointer and offset.
    if (is_zero(arg->elem_offset)) {
      ICHECK(is_zero(value->elem_offset))
          << "Trying to bind a Buffer with offset into one without offset "
          << " required elem_offset=" << arg->elem_offset
          << ", provided elem_offset=" << value->elem_offset;
    }

    this->Bind(arg->data, value->data, arg_name + ".data");
    if (Bind_(arg->elem_offset, value->elem_offset, arg_name + ".elem_offset",
              false)) {
      if (arg->offset_factor > 1) {
        PrimExpr offset = value->elem_offset;
        PrimExpr factor = make_const(offset.dtype(), arg->offset_factor);
        PrimExpr zero = make_zero(offset.dtype());
238
        BinderAddAssert(&analyzer_, zero == truncmod(offset, factor),
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
                        arg_name + ".elem_offset", &asserts_);
      }
    }
  }

  if (arg->shape.size() < value->shape.size()) {
    ICHECK(fuzzy_match) << "Argument " << arg_name << " size mismatch";
    size_t diff = value->shape.size() - arg->shape.size();
    for (size_t i = 0; i < diff; ++i) {
      ICHECK(is_one(analyzer_.Simplify(value->shape[i])))
          << "Argument " << arg_name << " shape mismatch" << arg->shape
          << " vs " << value->shape;
    }
    for (size_t i = 0; i < arg->shape.size(); ++i) {
      std::ostringstream os;
      os << arg_name << ".shape[" << i << "]";
      this->Bind(arg->shape[i], value->shape[i + diff], os.str());
    }
    if (!value->strides.empty()) {
      ICHECK_EQ(arg->strides.size(), arg->shape.size());
      ICHECK_EQ(value->strides.size(), value->shape.size());
      for (size_t i = 0; i < arg->strides.size(); ++i) {
        std::ostringstream os;
        os << arg_name << ".strides[" << i << "]";
        this->Bind(arg->strides[i], value->strides[i + diff], os.str());
      }
    }
  } else {
    this->BindArray(arg->shape, value->shape, arg_name + ".shape");
    this->BindArray(arg->strides, value->strides, arg_name + ".strides");
  }
}

inline PrimExpr TVMArrayGet(DataType t, Var arr,
                            builtin::TVMStructFieldKind kind) {
  return TVMStructGet(t, arr, 0, kind);
}

void ArgBinder::BindDLTensor(const Buffer &buffer, const PrimExpr &device_type,
                             const PrimExpr &device_id, const Var &handle,
279
                             const std::string &arg_name, bool is_used) {
280
281
282
283
  const DataType tvm_shape_type = DataType::ShapeIndex();
  const DataType tvm_ndim_type = DataType::Int(32);
  const Stmt nop = Evaluate(0);

284
285
286
287
  // Allow NULL DLTensor* for optional inputs.  When the handle is NULL,
  // avoid dereferencing it by using expression-level conditionals and
  // short-circuiting guards in asserts. Cache the null check in a Let-bound
  // boolean so codegen does not repeat `(handle == NULL)` everywhere.
288

289
290
291
292
  Var is_null_var(arg_name + "_is_null", DataType::Bool());
  init_nest_.emplace_back(
      LetStmt(is_null_var,
              Call(DataType::Bool(), builtin::isnullptr(), {handle}), nop));
293
294
295
296
297
298
299
  const PrimExpr &is_null = is_used ? const_false() : is_null_var;
  if (is_used) {
    init_nest_.emplace_back(AssertStmt(
        !is_null_var,
        tvm::tir::StringImm(arg_name + " is expected to have non-NULL pointer"),
        nop));
  }
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

  // dimension checks
  PrimExpr v_ndim = TVMArrayGet(tvm_ndim_type, handle, builtin::kArrNDim);

  // Helper functions for shape/stride name formatting
  auto shape_handle_name = [&]() { return arg_name + ".shape"; };
  auto stride_handle_name = [&]() { return arg_name + ".strides"; };
  auto array_element_name = [&](const std::string &arr_name, size_t k) {
    std::stringstream ss;
    ss << arr_name << '[' << k << ']';
    return ss.str();
  };
  auto shape_element_name = [&](size_t k) {
    return array_element_name(shape_handle_name(), k);
  };
  auto stride_element_name = [&](size_t k) {
    return array_element_name(stride_handle_name(), k);
  };

  PrimExpr a_ndim =
      make_const(tvm_ndim_type, static_cast<int64_t>(buffer->shape.size()));
  std::ostringstream ndim_err_msg;
322
323
  // Note: We cannot embed runtime values into the message string.
  // Keep message human-friendly without printing TIR exprs.
324
  ndim_err_msg << arg_name << ".ndim is expected to equal "
325
               << buffer->shape.size() << ", but got mismatched ndim";
326
  auto msg = StringImm(ndim_err_msg.str());
327
328
329
330
  // Only check ndim when handle is non-NULL (using if statement)
  Stmt ndim_check = AssertStmt(a_ndim == v_ndim, msg, nop);
  ndim_check = IfThenElse(Not(is_null), ndim_check);
  init_nest_.emplace_back(SeqStmt({ndim_check, nop}));
331
332
  // type checks
  std::ostringstream type_err_msg;
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
  // Avoid dumping TIR expressions in error text; just state mismatch.
  // Include expected dtype triplet for clarity.
  type_err_msg << arg_name << ".dtype is expected to be " << buffer->dtype
               << ", but got incompatible dtype";
  // Guard all dtype field loads by `is_null` using if_then_else
  PrimExpr v_type_code = tvm::if_then_else(
      Not(is_null),
      TVMArrayGet(DataType::UInt(8), handle, builtin::kArrTypeCode),
      IntImm(DataType::UInt(8), buffer->dtype.code()));
  PrimExpr v_type_bits = tvm::if_then_else(
      Not(is_null),
      TVMArrayGet(DataType::UInt(8), handle, builtin::kArrTypeBits),
      IntImm(DataType::UInt(8), buffer->dtype.bits()));
  PrimExpr v_type_lanes = tvm::if_then_else(
      Not(is_null),
      TVMArrayGet(DataType::UInt(16), handle, builtin::kArrTypeLanes),
      IntImm(DataType::UInt(16), buffer->dtype.lanes()));
  PrimExpr expect_code = IntImm(DataType::UInt(8), buffer->dtype.code());
  PrimExpr expect_bits = IntImm(DataType::UInt(8), buffer->dtype.bits());
  PrimExpr expect_lanes = IntImm(DataType::UInt(16), buffer->dtype.lanes());

  PrimExpr cond = (v_type_code == expect_code && v_type_bits == expect_bits &&
                   v_type_lanes == expect_lanes);

  // Allow float8_e4m3 to match float8_e4m3fn/float8_e4m3fnuz at runtime.
  if (buffer->dtype.is_float8_e4m3()) {
    PrimExpr code_e4m3 = IntImm(DataType::UInt(8), DataType::kFloat8_e4m3);
    PrimExpr code_e4m3fn = IntImm(DataType::UInt(8), DataType::kFloat8_e4m3fn);
    PrimExpr code_e4m3fnuz =
        IntImm(DataType::UInt(8), DataType::kFloat8_e4m3fnuz);
    PrimExpr code_match =
        (v_type_code == code_e4m3 || v_type_code == code_e4m3fn ||
         v_type_code == code_e4m3fnuz);
    cond = cond || (code_match && v_type_bits == expect_bits &&
                    v_type_lanes == expect_lanes);
  }
  // Allow float8_e5m2 to match float8_e5m2fnuz at runtime.
  if (buffer->dtype.is_float8_e5m2()) {
    PrimExpr code_e5m2 = IntImm(DataType::UInt(8), DataType::kFloat8_e5m2);
    PrimExpr code_e5m2fnuz =
        IntImm(DataType::UInt(8), DataType::kFloat8_e5m2fnuz);
    PrimExpr code_match =
        (v_type_code == code_e5m2 || v_type_code == code_e5m2fnuz);
    cond = cond || (code_match && v_type_bits == expect_bits &&
                    v_type_lanes == expect_lanes);
  }
  // Allow bool to match int8/uint8 at runtime, and also kDLBool(code=6).
  if (buffer->dtype.is_bool()) {
    PrimExpr code_int = IntImm(DataType::UInt(8), DataType::kInt);
    PrimExpr code_uint = IntImm(DataType::UInt(8), DataType::kUInt);
    PrimExpr code_kdlbool = IntImm(DataType::UInt(8), 6);
    PrimExpr bits8 = IntImm(DataType::UInt(8), 8);
    PrimExpr bits1 = IntImm(DataType::UInt(8), 1);
    PrimExpr lanes_ok = (v_type_lanes == expect_lanes);
    PrimExpr int8_ok =
        (v_type_code == code_int && v_type_bits == bits8 && lanes_ok);
    PrimExpr uint8_ok =
        (v_type_code == code_uint && v_type_bits == bits8 && lanes_ok);
    // Some frontends may tag bool tensors as kDLBool(code=6), commonly with
    // bits=8 or bits=1.
    PrimExpr kdlbool8_ok =
        (v_type_code == code_kdlbool && v_type_bits == bits8 && lanes_ok);
    PrimExpr kdlbool1_ok =
        (v_type_code == code_kdlbool && v_type_bits == bits1 && lanes_ok);
    // Also accept any dtype whose bitwidth=1, regardless of code, to be
    // defensive.
    PrimExpr bit1_ok = (v_type_bits == bits1 && lanes_ok);
    cond = cond || int8_ok || uint8_ok || kdlbool8_ok || kdlbool1_ok || bit1_ok;
  }
402
403
404
405
  if (!(buffer->dtype == DataType::Int(1) ||
        buffer->dtype == DataType::Int(4) ||
        buffer->dtype == DataType::UInt(4))) {
    auto type_msg = StringImm(type_err_msg.str());
406
407
408
409
    // Only check dtype when handle is non-NULL (using if statement)
    Stmt dtype_check = AssertStmt(cond, type_msg, nop);
    dtype_check = IfThenElse(Not(is_null), dtype_check);
    asserts_.emplace_back(SeqStmt({dtype_check, nop}));
410
411
412
413
414
415
416
417
  }

  // shape field
  Buffer buf_shape =
      decl_buffer({IntImm(DataType::Int(32), buffer->shape.size())},
                  tvm_shape_type, shape_handle_name());
  Var v_shape(shape_handle_name(), DataType::Handle());
  def_handle_dtype_.Set(v_shape, make_const(tvm_shape_type, 0));
418
419
420
421
422
423
424
425
426
  // Use if_then_else for NULL guard on the shape pointer itself, avoiding
  // dereferencing TVMStructGet(handle, kArrShape) when handle is NULL.
  init_nest_.emplace_back(
      LetStmt(buf_shape->data,
              tvm::if_then_else(
                  Not(is_null),
                  TVMArrayGet(DataType::Handle(), handle, builtin::kArrShape),
                  make_zero(DataType::Handle())),
              nop));
427
  init_nest_.emplace_back(DeclBuffer(buf_shape, nop));
428

429
  for (size_t k = 0; k < buffer->shape.size(); ++k) {
430
431
    // These packed-bit dtype shapes were not bound in the original
    // implementation, so we just use them as is.
432
433
434
435
436
    if (buffer->dtype == DataType::Int(4) ||
        buffer->dtype == DataType::UInt(4) ||
        buffer->dtype == DataType::Int(1)) {
      break;
    }
437
438

    // The "real" runtime shape value read from DLTensor
439
    PrimExpr shape_val =
440
441
442
443
444
445
446
        cast(buffer->shape[k].dtype(),
             BufferLoad(buf_shape,
                        {IntImm(DataType::Int(32), static_cast<int>(k))}));

    // When first encountering a Var (e.g., m), this will generate:
    //   Let(m, bound_shape_val, ...)
    // Constant dimensions will only generate consistency assertions.
447
    BindNullable(buffer->shape[k], shape_val, shape_element_name(k), true,
448
                 is_null);
449
  }
450

451
452
453
454
455
  // strides field
  Buffer buf_strides =
      decl_buffer({IntImm(DataType::Int(32), buffer->strides.size())},
                  tvm_shape_type, arg_name + ".strides");
  def_handle_dtype_.Set(buf_strides->data, tir::TypeAnnotation(tvm_shape_type));
456
457
458
459
460
461
462
  init_nest_.emplace_back(
      LetStmt(buf_strides->data,
              tvm::if_then_else(
                  Not(is_null),
                  TVMArrayGet(DataType::Handle(), handle, builtin::kArrStrides),
                  make_zero(DataType::Handle())),
              nop));
463
464
465
  init_nest_.emplace_back(DeclBuffer(buf_strides, nop));
  PrimExpr v_strides_is_null =
      Call(DataType::Bool(1), builtin::isnullptr(), {buf_strides->data});
466

467
468
469
470
  if (buffer->strides.empty()) {
    // Assert the buffer is compact
    DataType stype = buffer->DefaultIndexType();
    PrimExpr expect_stride = make_const(stype, 1);
471
    ffi::Array<PrimExpr> conds;
472
473
    for (size_t i = buffer->shape.size(); i != 0; --i) {
      size_t k = i - 1;
474
475
476
      PrimExpr svalue = cast(
          stype, BufferLoad(buf_strides,
                            {IntImm(DataType::Int(32), static_cast<int>(k))}));
477
478
479
480
      conds.push_back(buffer->shape[k] == 1 || expect_stride == svalue);
      expect_stride = expect_stride * buffer->shape[k];
    }
    std::ostringstream stride_err_msg;
481
482
483
    stride_err_msg
        << stride_handle_name()
        << ": expected to be compact array, but got non-compact strides";
484
485
486
487
488
489
490
    if (!conds.empty()) {
      auto stride_msg = StringImm(stride_err_msg.str());
      Stmt check =
          AssertStmt(foldl([](PrimExpr a, PrimExpr b,
                              Span span) { return logical_and(a, b, span); },
                           const_true(1), conds),
                     stride_msg, Evaluate(0));
491
      // Only check when strides array is actually present at runtime
492
493
494
495
      check = IfThenElse(Not(v_strides_is_null), check);
      asserts_.emplace_back(SeqStmt({check, Evaluate(0)}));
    }
  } else if (buffer->buffer_type == kAutoBroadcast) {
496
    PrimExpr stride_from_shape = 1;
497
498
499
500
501
    for (size_t i = buffer->shape.size(); i != 0; --i) {
      size_t k = i - 1;
      DataType stride_dtype = buffer->strides[k].dtype();
      PrimExpr explicit_stride =
          cast(stride_dtype,
502
503
504
               BufferLoad(buf_strides,
                          {IntImm(DataType::Int(32), static_cast<int>(k))}));

505
506
      PrimExpr stride_val = tvm::if_then_else(
          v_strides_is_null, stride_from_shape, explicit_stride);
507

508
509
      BindNullable(buffer->strides[k], stride_val, stride_element_name(k), true,
                   is_null);
510
511
    }
  } else {
512
    PrimExpr stride_from_shape = 1;
513

514
    for (int k = static_cast<int>(buffer->strides.size()) - 1; k >= 0; --k) {
515
516
517
518
519
520
      DataType stride_dtype = buffer->strides[k].dtype();
      PrimExpr explicit_stride =
          cast(stride_dtype,
               BufferLoad(buf_strides, {IntImm(DataType::Int(32), k)}));
      PrimExpr shape_stride = cast(
          stride_dtype, BufferLoad(buf_shape, {IntImm(DataType::Int(32), k)}));
521

522
523
      PrimExpr stride_val = tvm::if_then_else(
          v_strides_is_null, stride_from_shape, explicit_stride);
524

525
526
      BindNullable(buffer->strides[k], stride_val, stride_element_name(k), true,
                   is_null);
527
528
    }
  }
529

530
531
532
533
  // Byte_offset field.
  int data_bytes = GetVectorBytes(buffer->dtype);

  if (const auto *const_offset = buffer->elem_offset.as<IntImmNode>()) {
534
535
536
537
538
539
540
541
542
    // Constant elem_offset: only need consistency check, no need for additional
    // Var binding.
    PrimExpr actual_byte_offset = tvm::if_then_else(
        Not(is_null),
        TVMArrayGet(DataType::UInt(64), handle, builtin::kArrByteOffset),
        make_const(DataType::UInt(64), 0));
    PrimExpr expect_byte_offset =
        make_const(DataType::UInt(64), const_offset->value * data_bytes);
    Stmt byte_off_check =
543
        AssertStmt(expect_byte_offset == actual_byte_offset,
544
                   StringImm(arg_name + ".byte_offset mismatch"), nop);
545
546
    byte_off_check = IfThenElse(Not(is_null), byte_off_check);
    asserts_.emplace_back(SeqStmt({byte_off_check, nop}));
547
  } else {
548
549
550
551
552
553
554
555
    PrimExpr actual_byte_offset = tvm::if_then_else(
        Not(is_null),
        TVMArrayGet(DataType::UInt(64), handle, builtin::kArrByteOffset),
        make_const(DataType::UInt(64), 0));
    PrimExpr expect_elem_off =
        cast(buffer->elem_offset.dtype(),
             (actual_byte_offset / make_const(DataType::UInt(64), data_bytes)));

556
557
    BindNullable(buffer->elem_offset, expect_elem_off,
                 arg_name + ".elem_offset", true, is_null);
558
559
560
561
562

    if (buffer->offset_factor > 1) {
      PrimExpr offset = buffer->elem_offset;
      PrimExpr factor = make_const(offset.dtype(), buffer->offset_factor);
      PrimExpr zero = make_zero(offset.dtype());
563
564
      BindNullable(offset, truncmod(offset, factor), arg_name + ".elem_offset",
                   true, is_null);
565
566
    }
  }
567

568
  // device info.
569
570
571
572
573
574
575
576
577
  // Define device_id from handle when available (so later passes can use it)
  PrimExpr actual_dev_type = tvm::if_then_else(
      Not(is_null),
      TVMArrayGet(DataType::Int(32), handle, builtin::kArrDeviceType),
      make_zero(DataType::Int(32)));
  PrimExpr actual_dev_id = tvm::if_then_else(
      Not(is_null),
      TVMArrayGet(DataType::Int(32), handle, builtin::kArrDeviceId),
      make_zero(DataType::Int(32)));
578

579
580
581
582
583
  // Bind device_id to a safe expression (0 when NULL handle)
  BindNullable(device_id, actual_dev_id, arg_name + ".device_id", true,
               is_null);
  // Check device_type consistency (device_id equality is implicitly ensured by
  // binding above)
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
  {
    std::ostringstream dev_msg;
    dev_msg << arg_name << ".device_type mismatch";
    if (const auto *imm = device_type.as<IntImmNode>()) {
      dev_msg << " [expected: " << imm->value << " ("
              << tvm::runtime::DLDeviceType2Str(static_cast<int>(imm->value))
              << ")]";
    }
    // Give a short legend so users can interpret numeric codes in the
    // appended "got/expected" part printed by the runtime.
    dev_msg << "; DLPack codes: 1=CPU, 2=CUDA, 7=Vulkan, 8=Metal, 10=ROCM, "
               "14=OneAPI, 15=WebGPU";
    auto device_type_check =
        IfThenElse(Not(is_null), AssertStmt(device_type == actual_dev_type,
                                            StringImm(dev_msg.str()), nop));
    asserts_.emplace_back(SeqStmt({device_type_check, Evaluate(0)}));
  }
601
602
603
604

  // Data field.  Because the validation of the data field may depend
  // on a dynamic size defined by the other DLTensor* parameters, this
  // field must be generated last.
605
606
  // Bind data pointer using expression-level guard to avoid deref on NULL.
  {
607
    Var vptr(buffer->data);
608
609
610
611
612
    PrimExpr data_ptr = tvm::if_then_else(
        Not(is_null),
        TVMArrayGet(DataType::Handle(), handle, builtin::kArrData),
        make_zero(DataType::Handle()));
    BindNullable(buffer->data, data_ptr, arg_name + ".data", true, is_null);
613
614

    // Check if the data pointer is NULL.  This check is skipped for
615
    // size-0 arrays and also skipped when handle itself is NULL.
616
617
    auto alloc_size = [&]() -> PrimExpr {
      PrimExpr product = IntImm(buffer->DefaultIndexType(), 1);
618
      for (const auto &dim : buffer->shape)
619
620
621
        product *= dim;
      return product;
    }();
622
623
624
    Stmt data_null_check = AssertStmt(
        (alloc_size == 0) ||
            !Call(DataType::Bool(), builtin::isnullptr(), {vptr}),
625
626
        StringImm(arg_name +
                  " is expected to have non-NULL data pointer, but got NULL"),
627
628
629
        nop);
    data_null_check = IfThenElse(Not(is_null), data_null_check);
    asserts_.emplace_back(SeqStmt({data_null_check, nop}));
630
631
632
633
634

    // mark alignment of external bufs
    init_nest_.emplace_back(
        AttrStmt(vptr, tir::attr::storage_alignment,
                 IntImm(DataType::Int(32), buffer->data_alignment), nop));
635
636

    def_handle_dtype_.Set(vptr, tir::TypeAnnotation(buffer->dtype));
637
638
639
640
641
  }
}

} // namespace tl
} // namespace tvm