example_gemm.py 1.48 KB
Newer Older
1
import tilelang
2
import tilelang.language as T
3
4
5


def matmul(M, N, K, block_M, block_N, block_K, dtype="float16", accum_dtype="float"):
6

7
    @T.prim_func
8
    def gemm(
9
            A: T.Tensor((M, K), dtype),
10
            B: T.Tensor((K, N), dtype),
11
            C: T.Tensor((M, N), dtype),
12
    ):
13
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=128) as (bx, by):
14
            A_shared = T.alloc_shared((block_M, block_K), dtype)
15
            B_shared = T.alloc_shared((block_K, block_N), dtype)
16
            C_local = T.alloc_fragment((block_M, block_N), accum_dtype)
17

18
            T.clear(C_local)
19
            for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=3):
20
                T.copy(A[by * block_M, k * block_K], A_shared)
21
22
23
24
                T.copy(B[k * block_K, bx * block_N], B_shared)
                T.gemm(A_shared, B_shared, C_local)

            T.copy(C_local, C[by * block_M, bx * block_N])
25

26
    return gemm
27

28

29
30
def main():
    func = matmul(1024, 1024, 1024, 128, 128, 32)
31

32
    print(func)
33

34
    kernel = tilelang.compile(func, out_idx=-1)
35

36
    import torch
37

38
39
    a = torch.randn(1024, 1024).cuda().half()
    b = torch.randn(1024, 1024).cuda().half()
40

41
    c = kernel(a, b)
42

43
    ref_c = a @ b
44

45
46
47
48
    print("c:")
    print(c)
    print("ref_c:")
    print(ref_c)
49

50
51
    torch.testing.assert_close(c, ref_c, rtol=1e-2, atol=1e-2)
    print("All check passed.")
52

53
54
55
56
57
58
59
    # Get CUDA Source
    print("CUDA Source:")
    print(kernel.get_kernel_source())


if __name__ == "__main__":
    main()