example_gemm.py 8.24 KB
Newer Older
1
2
3
4
import argparse
import torch
import itertools
import tilelang as tl
5
import tilelang.language as T
yyttt6's avatar
yyttt6 committed
6
from tilelang.autotuner import AutoTuner
7
8
9
10
11
from tilelang.carver.template import MatmulTemplate
from tilelang.carver.arch import CUDA
from tilelang.carver.roller.rasterization import NoRasterization


12
13
def ref_program(A, B):
    return A @ B.T
14
15


16
def get_configs(M, N, K, with_roller=False, topk=20):
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
    if with_roller:
        arch = CUDA("cuda")
        carve_template = MatmulTemplate(
            M=M,
            N=N,
            K=K,
            in_dtype="float16",
            out_dtype="float16",
            accum_dtype="float",
        ).with_arch(arch)

        func = carve_template.equivalent_function()
        assert func is not None, "Function is None"
        roller_hints = carve_template.recommend_hints(topk=topk)
        if roller_hints is None:
            raise ValueError("No Roller Hints Found for TensorCore Scheduling")
        configs = []
        for hint in roller_hints:
            config = {}
            block_m, block_n = hint.block
            warp_m, warp_n = hint.warp
            # block_rows, block_cols represents warp partitioning
            block_rows, block_cols = block_m // warp_m, block_n // warp_n
            config["block_M"] = block_m
            config["block_N"] = block_n
            config["block_K"] = hint.rstep[0]
43
            config["num_stages"] = hint.pipeline_stage if hint.pipeline_stage > 1 else 0
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
            config["thread_num"] = block_rows * block_cols * 32
            config["enable_rasteration"] = hint.rasterization_plan is not NoRasterization
            configs.append(config)
        for config in configs:
            print(config)
    else:
        block_M = [64, 128, 256]
        block_N = [64, 128, 256]
        block_K = [32, 64]
        num_stages = [0, 1, 2, 3]
        thread_num = [128, 256]
        enable_rasterization = [True, False]
        _configs = list(
            itertools.product(
                block_M,
                block_N,
                block_K,
                num_stages,
                thread_num,
                enable_rasterization,
            ))

        configs = [
            {
                "block_M": c[0],
                "block_N": c[1],
                "block_K": c[2],
                "num_stages": c[3],
                "thread_num": c[4],
                "enable_rasteration": c[5],  # keep param name for backward-compat
            } for c in _configs
        ]
    return configs


def get_best_config(M, N, K, with_roller=False):

    def kernel(
        block_M=None,
        block_N=None,
        block_K=None,
        num_stages=None,
        thread_num=None,
        enable_rasteration=None,
    ):
        dtype = "float16"
        accum_dtype = "float"

        @T.prim_func
        def main(
94
95
96
                A: T.Tensor((M, K), dtype),
                B: T.Tensor((N, K), dtype),
                C: T.Tensor((M, N), dtype),
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
        ):
            with T.Kernel(
                    T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=thread_num) as (bx, by):
                A_shared = T.alloc_shared((block_M, block_K), dtype)
                B_shared = T.alloc_shared((block_N, block_K), dtype)
                C_local = T.alloc_fragment((block_M, block_N), accum_dtype)
                C_shared = T.alloc_shared((block_M, block_N), dtype)
                T.use_swizzle(panel_size=10, enable=enable_rasteration)
                T.clear(C_local)
                for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=num_stages):
                    T.copy(A[by * block_M, k * block_K], A_shared)
                    T.copy(B[bx * block_N, k * block_K], B_shared)
                    T.gemm(
                        A_shared,
                        B_shared,
                        C_local,
                        transpose_B=True,
                    )
                T.copy(C_local, C_shared)
                T.copy(C_shared, C[by * block_M, bx * block_N])

        return main

yyttt6's avatar
yyttt6 committed
120
121
122
123
124
125
126
127
128
    autotuner = AutoTuner.from_kernel(
        kernel=kernel, configs=get_configs(M, N, K, with_roller)).set_compile_args(
            out_idx=[-1],
            supply_type=tl.TensorSupplyType.Integer,
            ref_prog=ref_program,
            skip_check=False,
            target="auto",
        )
    return autotuner.run(warmup=3, rep=20)
129
130


131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
def get_heuristic_config() -> dict:
    # Get CUDA device properties
    if not torch.cuda.is_available():
        raise RuntimeError("CUDA is not available")
    device = torch.cuda.current_device()
    sm_major, sm_minor = torch.cuda.get_device_capability(device)
    sm_version = sm_major * 10 + sm_minor
    print(f"CUDA device capability: {sm_version}")
    if sm_version in {80}:
        return {
            "block_M": 128,
            "block_N": 256,
            "block_K": 32,
            "num_stages": 2,
            "thread_num": 128,
            "enable_rasteration": True
        }
    elif sm_version in {90}:
        return {
            "block_M": 128,
            "block_N": 256,
            "block_K": 64,
            "num_stages": 3,
            "thread_num": 256,
            "enable_rasteration": True
        }
    else:
        return {
            "block_M": 128,
            "block_N": 256,
            "block_K": 32,
            "num_stages": 0,
            "thread_num": 128,
            "enable_rasteration": True
        }


168
169
170
171
172
173
174
175
176
177
178
def matmul(M,
           N,
           K,
           block_M,
           block_N,
           block_K,
           num_stages,
           thread_num,
           enable_rasteration,
           dtype="float16",
           accum_dtype="float"):
179

180
181
    @T.prim_func
    def main(
182
183
184
            A: T.Tensor((M, K), dtype),
            B: T.Tensor((N, K), dtype),
            C: T.Tensor((M, N), dtype),
185
    ):
186
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=thread_num) as (bx, by):
187
            A_shared = T.alloc_shared((block_M, block_K), dtype)
188
            B_shared = T.alloc_shared((block_N, block_K), dtype)
189
            C_local = T.alloc_fragment((block_M, block_N), accum_dtype)
190
191
            C_shared = T.alloc_shared((block_M, block_N), dtype)
            T.use_swizzle(panel_size=10, enable=enable_rasteration)
192
            T.clear(C_local)
193
            for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=num_stages):
194
                T.copy(A[by * block_M, k * block_K], A_shared)
195
196
197
198
199
200
201
202
203
                T.copy(B[bx * block_N, k * block_K], B_shared)
                T.gemm(
                    A_shared,
                    B_shared,
                    C_local,
                    transpose_B=True,
                )
            T.copy(C_local, C_shared)
            T.copy(C_shared, C[by * block_M, bx * block_N])
204
205
206

    return main

207
208
209

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Autotuned MatMul Benchmark")
210
211
212
    parser.add_argument("--m", type=int, default=16384, help="Matrix dimension M")
    parser.add_argument("--n", type=int, default=16384, help="Matrix dimension N")
    parser.add_argument("--k", type=int, default=16384, help="Matrix dimension K")
213
214
215
    parser.add_argument(
        "--use_autotune",
        action="store_true",
216
        default=False,
217
218
219
220
221
222
223
224
225
226
227
        help="Whether to use autotune for matmul configs")
    parser.add_argument(
        "--with_roller",
        action="store_true",
        default=True,
        help="Whether to enable BitBLAS roller for search space")
    args = parser.parse_args()
    M, N, K = args.m, args.n, args.k
    a = torch.randn(M, K).cuda().half()
    b = torch.randn(N, K).cuda().half()
    use_autotune = args.use_autotune
228
    use_autotune = True
229
230
    with_roller = args.with_roller
    if use_autotune:
yyttt6's avatar
yyttt6 committed
231
        result = get_best_config(M, N, K, with_roller)
232
        print(result.config)
yyttt6's avatar
yyttt6 committed
233
        kernel = result.kernel
234
    else:
235
236
        config = get_heuristic_config()
        kernel = tl.compile(matmul(M, N, K, **config), out_idx=-1)
237

238
239
240
241
    # benchmark
    profiler = kernel.get_profiler(tensor_supply_type=tl.TensorSupplyType.Auto)
    tilelang_latency = profiler.do_bench()
    ref_latency = profiler.do_bench(ref_program)
242
    profiler.assert_allclose(ref_program, atol=1e-2, rtol=1e-2)
243
244
245
246
    print(f"TileLang latency: {tilelang_latency}")
    print(f"Ref latency: {ref_latency}")
    print(f"TileLang TFlops: {2 * M * N * K / tilelang_latency * 1e-9}")
    print(f"Ref TFlops: {2 * M * N * K / ref_latency * 1e-9}")