example_tilelang_nsa_fwd.py 6.8 KB
Newer Older
1
2
# ruff: noqa
import torch
3
from reference import naive_nsa
4
5
6
7
8
9
10
import tilelang
from tilelang import language as T
import tilelang.testing

tilelang.testing.set_random_seed(0)


11
@tilelang.jit(
12
13
    out_idx=[-1],
    pass_configs={
14
        tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
15
16
        tilelang.PassConfigKey.TL_DISABLE_TMA_LOWER: True,
        tilelang.PassConfigKey.TL_DISABLE_WARP_SPECIALIZED: True,
17
    })
18
19
20
21
22
23
24
25
26
27
28
def native_sparse_attention(batch,
                            heads,
                            seq_len,
                            dim,
                            is_causal,
                            scale=None,
                            block_size=64,
                            groups=1,
                            selected_blocks=16):
    if scale is None:
        scale = (1.0 / dim)**0.5 * 1.44269504  # log2(e)
29
30
31
    else:
        scale = scale * 1.44269504  # log2(e)

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
    head_kv = heads // groups
    q_shape = [batch, seq_len, heads, dim]
    kv_shape = [batch, seq_len, head_kv, dim]
    block_indices_shape = [batch, seq_len, head_kv, selected_blocks]
    block_indices_dtype = "int32"
    dtype = "float16"
    accum_dtype = "float"
    block_S = block_size
    block_T = min(128, tilelang.math.next_power_of_2(dim))

    NK = tilelang.cdiv(dim, block_T)
    NV = tilelang.cdiv(dim, block_T)
    assert NK == 1, "The key dimension can not be larger than 256"

    S = selected_blocks
    G = groups
    BS = block_S
    BK = BV = block_T
50
    num_stages = 2
51
52
53
54
    threads = 32

    @T.prim_func
    def native_sparse_attention(
55
56
57
58
59
            Q: T.Tensor(q_shape, dtype),
            K: T.Tensor(kv_shape, dtype),
            V: T.Tensor(kv_shape, dtype),
            BlockIndices: T.Tensor(block_indices_shape, block_indices_dtype),
            Output: T.Tensor(q_shape, dtype),
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
    ):
        with T.Kernel(seq_len, NV, batch * head_kv, threads=threads) as (bx, by, bz):
            Q_shared = T.alloc_shared([G, BK], dtype)
            K_shared = T.alloc_shared([BS, BK], dtype)
            V_shared = T.alloc_shared([BS, BV], dtype)
            O_shared = T.alloc_shared([G, BV], dtype)

            acc_s = T.alloc_fragment([G, BS], accum_dtype)
            acc_s_cast = T.alloc_fragment([G, BS], dtype)
            acc_o = T.alloc_fragment([G, BV], accum_dtype)
            scores_max = T.alloc_fragment([G], accum_dtype)
            scores_max_prev = T.alloc_fragment([G], accum_dtype)
            scores_scale = T.alloc_fragment([G], accum_dtype)
            scores_sum = T.alloc_fragment([G], accum_dtype)
            logsum = T.alloc_fragment([G], accum_dtype)

            i_t, i_v, i_bh = bx, by, bz
            i_b, i_h = i_bh // head_kv, i_bh % head_kv

            NS = S
            T.copy(Q[i_b, i_t, i_h * G:(i_h + 1) * G, :], Q_shared)

            T.fill(acc_o, 0)
            T.fill(logsum, 0)
            T.fill(scores_max, -T.infinity(accum_dtype))

            for i in T.Pipelined(NS, num_stages=num_stages):
                i_s = BlockIndices[i_b, i_t, i_h, i] * BS
                if i_s <= i_t and i_s >= 0:
                    # [BS, BK]
                    T.copy(K[i_b, i_s:i_s + BS, i_h, :], K_shared)

                    if is_causal:
                        for i, j in T.Parallel(G, BS):
                            acc_s[i, j] = T.if_then_else(i_t >= (i_s + j), 0,
                                                         -T.infinity(acc_s.dtype))
                    else:
                        T.clear(acc_s)

                    T.gemm(
                        Q_shared,
                        K_shared,
                        acc_s,
                        transpose_B=True,
                        policy=T.GemmWarpPolicy.FullRow)

                    # Softmax
                    T.copy(scores_max, scores_max_prev)
                    T.fill(scores_max, -T.infinity(accum_dtype))
                    T.reduce_max(acc_s, scores_max, dim=1, clear=True)
                    for i in T.Parallel(G):
                        scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
                    for i, j in T.Parallel(G, BS):
                        acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
                    T.reduce_sum(acc_s, scores_sum, dim=1)
                    for i in T.Parallel(G):
                        logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
                    T.copy(acc_s, acc_s_cast)

                    # Rescale
                    for i, j in T.Parallel(G, BV):
                        acc_o[i, j] *= scores_scale[i]

                    # V * softmax(Q * K)
                    T.copy(V[i_b, i_s:i_s + BS, i_h, i_v * BV:(i_v + 1) * BV], V_shared)
                    T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)

            for i, j in T.Parallel(G, BV):
                acc_o[i, j] /= logsum[i]
            T.copy(acc_o, O_shared)
            T.copy(O_shared, Output[i_b, i_t, i_h * G:(i_h + 1) * G, i_v * BV:(i_v + 1) * BV])

    return native_sparse_attention


135
def main():
136
    B, SEQ_LEN, H, HQ, D, S, block_size, dtype, scale = 2, 64, 1, 16, 32, 1, 32, torch.float16, 0.1
137

138
    kernel = native_sparse_attention(
139
140
141
142
143
144
145
146
        batch=B,
        heads=HQ,
        seq_len=SEQ_LEN,
        dim=D,
        is_causal=True,
        block_size=block_size,
        groups=HQ // H,
        selected_blocks=S,
147
        scale=scale,
148
    )
149
    print(kernel.get_kernel_source())
150
151
152
153
    torch.random.manual_seed(0)
    Q = torch.randn((B, SEQ_LEN, HQ, D), dtype=dtype, device='cuda').requires_grad_(True)
    K = torch.randn((B, SEQ_LEN, H, D), dtype=dtype, device='cuda').requires_grad_(True)
    V = torch.randn((B, SEQ_LEN, H, D), dtype=dtype, device='cuda').requires_grad_(True)
154
155
    g_slc = torch.ones((B, SEQ_LEN, HQ), dtype=dtype, device='cuda').requires_grad_(True)
    g_swa = torch.ones((B, SEQ_LEN, HQ), dtype=dtype, device='cuda').requires_grad_(True)
156
157
158
    DO = torch.randn((B, SEQ_LEN, HQ, D), dtype=dtype, device='cuda')

    block_indices = torch.full((B, SEQ_LEN, H, S), SEQ_LEN, dtype=torch.long, device='cuda')
liu yuhao's avatar
liu yuhao committed
159
    block_counts = torch.zeros((B, SEQ_LEN, H), dtype=torch.long, device='cuda')
160
161
162
163
164
    for b in range(B):
        for t in range(SEQ_LEN):
            for h in range(H):
                i_i = torch.randperm(max(1, (t // block_size)))[:S]
                block_indices[b, t, h, :len(i_i)] = i_i
liu yuhao's avatar
liu yuhao committed
165
                block_counts[b, t, h] = (block_indices[b, t, h] != SEQ_LEN).sum().item()
166
167
168
169
    block_indices = block_indices.sort(-1)[0]

    out = kernel(Q, K, V, block_indices.to(torch.int32))

170
    ref = naive_nsa(
171
172
173
        q=Q,
        k=K,
        v=V,
174
175
        g_slc=g_slc,
        g_swa=g_swa,
176
177
        block_indices=block_indices,
        block_counts=block_counts,
178
179
180
        block_size=block_size,
        scale=scale,
    )
181
182
183
184

    print("out", out)
    print("ref", ref)
    torch.testing.assert_close(ref, out, atol=1e-2, rtol=1e-2)
185
186
187
188


if __name__ == "__main__":
    main()