example_tilelang_nsa_fwd.py 6.58 KB
Newer Older
1
2
# ruff: noqa
import torch
3
from reference import naive_nsa
4
5
6
7
8
9
10
import tilelang
from tilelang import language as T
import tilelang.testing

tilelang.testing.set_random_seed(0)


11
12
13
14
@tilelang.jit(
    out_idx=[-1], pass_configs={
        tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
    })
15
16
17
18
19
20
21
22
23
24
25
def native_sparse_attention(batch,
                            heads,
                            seq_len,
                            dim,
                            is_causal,
                            scale=None,
                            block_size=64,
                            groups=1,
                            selected_blocks=16):
    if scale is None:
        scale = (1.0 / dim)**0.5 * 1.44269504  # log2(e)
26
27
28
    else:
        scale = scale * 1.44269504  # log2(e)

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
    head_kv = heads // groups
    q_shape = [batch, seq_len, heads, dim]
    kv_shape = [batch, seq_len, head_kv, dim]
    block_indices_shape = [batch, seq_len, head_kv, selected_blocks]
    block_indices_dtype = "int32"
    dtype = "float16"
    accum_dtype = "float"
    block_S = block_size
    block_T = min(128, tilelang.math.next_power_of_2(dim))

    NK = tilelang.cdiv(dim, block_T)
    NV = tilelang.cdiv(dim, block_T)
    assert NK == 1, "The key dimension can not be larger than 256"

    S = selected_blocks
    G = groups
    BS = block_S
    BK = BV = block_T
47
    num_stages = 2
48
49
50
51
    threads = 32

    @T.prim_func
    def native_sparse_attention(
52
53
54
55
56
            Q: T.Tensor(q_shape, dtype),
            K: T.Tensor(kv_shape, dtype),
            V: T.Tensor(kv_shape, dtype),
            BlockIndices: T.Tensor(block_indices_shape, block_indices_dtype),
            Output: T.Tensor(q_shape, dtype),
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
    ):
        with T.Kernel(seq_len, NV, batch * head_kv, threads=threads) as (bx, by, bz):
            Q_shared = T.alloc_shared([G, BK], dtype)
            K_shared = T.alloc_shared([BS, BK], dtype)
            V_shared = T.alloc_shared([BS, BV], dtype)
            O_shared = T.alloc_shared([G, BV], dtype)

            acc_s = T.alloc_fragment([G, BS], accum_dtype)
            acc_s_cast = T.alloc_fragment([G, BS], dtype)
            acc_o = T.alloc_fragment([G, BV], accum_dtype)
            scores_max = T.alloc_fragment([G], accum_dtype)
            scores_max_prev = T.alloc_fragment([G], accum_dtype)
            scores_scale = T.alloc_fragment([G], accum_dtype)
            scores_sum = T.alloc_fragment([G], accum_dtype)
            logsum = T.alloc_fragment([G], accum_dtype)

            i_t, i_v, i_bh = bx, by, bz
            i_b, i_h = i_bh // head_kv, i_bh % head_kv

            NS = S
            T.copy(Q[i_b, i_t, i_h * G:(i_h + 1) * G, :], Q_shared)

            T.fill(acc_o, 0)
            T.fill(logsum, 0)
            T.fill(scores_max, -T.infinity(accum_dtype))

            for i in T.Pipelined(NS, num_stages=num_stages):
                i_s = BlockIndices[i_b, i_t, i_h, i] * BS
                if i_s <= i_t and i_s >= 0:
                    # [BS, BK]
                    T.copy(K[i_b, i_s:i_s + BS, i_h, :], K_shared)

                    if is_causal:
                        for i, j in T.Parallel(G, BS):
                            acc_s[i, j] = T.if_then_else(i_t >= (i_s + j), 0,
                                                         -T.infinity(acc_s.dtype))
                    else:
                        T.clear(acc_s)

                    T.gemm(
                        Q_shared,
                        K_shared,
                        acc_s,
                        transpose_B=True,
                        policy=T.GemmWarpPolicy.FullRow)

                    # Softmax
                    T.copy(scores_max, scores_max_prev)
                    T.fill(scores_max, -T.infinity(accum_dtype))
                    T.reduce_max(acc_s, scores_max, dim=1, clear=True)
                    for i in T.Parallel(G):
                        scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
                    for i, j in T.Parallel(G, BS):
                        acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
                    T.reduce_sum(acc_s, scores_sum, dim=1)
                    for i in T.Parallel(G):
                        logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
                    T.copy(acc_s, acc_s_cast)

                    # Rescale
                    for i, j in T.Parallel(G, BV):
                        acc_o[i, j] *= scores_scale[i]

                    # V * softmax(Q * K)
                    T.copy(V[i_b, i_s:i_s + BS, i_h, i_v * BV:(i_v + 1) * BV], V_shared)
                    T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)

            for i, j in T.Parallel(G, BV):
                acc_o[i, j] /= logsum[i]
            T.copy(acc_o, O_shared)
            T.copy(O_shared, Output[i_b, i_t, i_h * G:(i_h + 1) * G, i_v * BV:(i_v + 1) * BV])

    return native_sparse_attention


132
def main():
133
    B, SEQ_LEN, H, HQ, D, S, block_size, dtype, scale = 2, 64, 1, 16, 32, 1, 32, torch.float16, 0.1
134

135
    kernel = native_sparse_attention(
136
137
138
139
140
141
142
143
        batch=B,
        heads=HQ,
        seq_len=SEQ_LEN,
        dim=D,
        is_causal=True,
        block_size=block_size,
        groups=HQ // H,
        selected_blocks=S,
144
        scale=scale,
145
    )
146
    print(kernel.get_kernel_source())
147
148
149
150
    torch.random.manual_seed(0)
    Q = torch.randn((B, SEQ_LEN, HQ, D), dtype=dtype, device='cuda').requires_grad_(True)
    K = torch.randn((B, SEQ_LEN, H, D), dtype=dtype, device='cuda').requires_grad_(True)
    V = torch.randn((B, SEQ_LEN, H, D), dtype=dtype, device='cuda').requires_grad_(True)
151
152
    g_slc = torch.ones((B, SEQ_LEN, HQ), dtype=dtype, device='cuda').requires_grad_(True)
    g_swa = torch.ones((B, SEQ_LEN, HQ), dtype=dtype, device='cuda').requires_grad_(True)
153
154
155
156
157
158
159
160
161
162
163
164
165
    DO = torch.randn((B, SEQ_LEN, HQ, D), dtype=dtype, device='cuda')

    block_indices = torch.full((B, SEQ_LEN, H, S), SEQ_LEN, dtype=torch.long, device='cuda')
    for b in range(B):
        for t in range(SEQ_LEN):
            for h in range(H):
                i_i = torch.randperm(max(1, (t // block_size)))[:S]
                block_indices[b, t, h, :len(i_i)] = i_i
    block_indices = block_indices.sort(-1)[0]
    block_counts = torch.randint(1, S + 1, (B, SEQ_LEN, H), device='cuda')

    out = kernel(Q, K, V, block_indices.to(torch.int32))

166
    ref = naive_nsa(
167
168
169
        q=Q,
        k=K,
        v=V,
170
171
        g_slc=g_slc,
        g_swa=g_swa,
172
173
        block_indices=block_indices,
        block_counts=block_counts,
174
175
176
        block_size=block_size,
        scale=scale,
    )
177
178
179
180

    print("out", out)
    print("ref", ref)
    torch.testing.assert_close(ref, out, atol=1e-2, rtol=1e-2)
181
182
183
184


if __name__ == "__main__":
    main()