example_mla_decode_paged.py 19.1 KB
Newer Older
1
2
3
4
5
6
7
8
import torch
import tilelang
from tilelang.autotuner import *
import tilelang.language as T
import argparse
from tilelang.profiler import do_bench
import math

9

10
11
12
13
@tilelang.jit(
    out_idx=[8], pass_configs={
        tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
    })
14
15
16
17
18
19
20
21
22
23
24
25
26
def mla_decode_tilelang(batch,
                        h_q,
                        h_kv,
                        max_seqlen_pad,
                        dv,
                        dpe,
                        block_N,
                        block_H,
                        num_split,
                        block_size,
                        softmax_scale=None):
    if softmax_scale is None:
        softmax_scale = (dv + dpe)**-0.5
27
    scale = float(softmax_scale * 1.44269504)  # log2(e)
28
29
30
31
32
33
34
35
36
    dtype = "float16"
    accum_dtype = "float"
    kv_group_num = h_q // h_kv
    VALID_BLOCK_H = min(block_H, kv_group_num)
    assert h_kv == 1, "h_kv must be 1"
    assert block_size >= block_N and block_size % block_N == 0, "block_size must be larger than block_N and a multiple of block_N"

    @T.macro
    def flash_mla_kernel(
37
38
39
40
41
42
43
            Q: T.Tensor([batch, h_q, dv], dtype),
            Q_pe: T.Tensor([batch, h_q, dpe], dtype),
            KV: T.Tensor([batch * max_seqlen_pad, h_kv, dv], dtype),
            K_pe: T.Tensor([batch * max_seqlen_pad, h_kv, dpe], dtype),
            BLOCK_TABLE: T.Tensor([batch, max_seqlen_pad // block_size], "int32"),
            CACHE_SEQLENS: T.Tensor([batch], "int32"),
            Output: T.Tensor([batch, h_q, dv], dtype),
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
    ):
        with T.Kernel(batch, h_q // min(block_H, kv_group_num), threads=256) as (bx, by):
            Q_shared = T.alloc_shared([block_H, dv], dtype)
            S_shared = T.alloc_shared([block_H, block_N], dtype)
            Q_pe_shared = T.alloc_shared([block_H, dpe], dtype)
            KV_shared = T.alloc_shared([block_N, dv], dtype)
            K_pe_shared = T.alloc_shared([block_N, dpe], dtype)
            O_shared = T.alloc_shared([block_H, dv], dtype)
            acc_s = T.alloc_fragment([block_H, block_N], accum_dtype)
            acc_o = T.alloc_fragment([block_H, dv], accum_dtype)
            scores_max = T.alloc_fragment([block_H], accum_dtype)
            scores_max_prev = T.alloc_fragment([block_H], accum_dtype)
            scores_scale = T.alloc_fragment([block_H], accum_dtype)
            scores_sum = T.alloc_fragment([block_H], accum_dtype)
            logsum = T.alloc_fragment([block_H], accum_dtype)

            cur_kv_head = by // (kv_group_num // block_H)
            T.use_swizzle(10)
            T.annotate_layout({
                O_shared: tilelang.layout.make_swizzled_layout(O_shared),
                S_shared: tilelang.layout.make_swizzled_layout(S_shared),
            })

            T.copy(Q[bx, by * VALID_BLOCK_H:(by + 1) * VALID_BLOCK_H, :], Q_shared)
            T.copy(Q_pe[bx, by * VALID_BLOCK_H:(by + 1) * VALID_BLOCK_H, :], Q_pe_shared)
            T.fill(acc_o, 0)
            T.fill(logsum, 0)
            T.fill(scores_max, -T.infinity(accum_dtype))

            loop_range = T.ceildiv(CACHE_SEQLENS[bx], block_N)
            for kr in T.Pipelined(loop_range, num_stages=2):
                k = loop_range - 1 - kr
76
77
                kv_start = BLOCK_TABLE[bx, (k * block_N) //
                                       block_size] * block_size + (k * block_N) % block_size
78
79
80
81
82
83
84
85
86
87
88
89
90
                T.copy(KV[kv_start:kv_start + block_N, cur_kv_head, :], KV_shared)
                T.copy(K_pe[kv_start:kv_start + block_N, cur_kv_head, :], K_pe_shared)
                T.clear(acc_s)
                T.gemm(
                    Q_shared, KV_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullCol)
                T.gemm(
                    Q_pe_shared,
                    K_pe_shared,
                    acc_s,
                    transpose_B=True,
                    policy=T.GemmWarpPolicy.FullCol)
                T.copy(scores_max, scores_max_prev)
                T.fill(scores_max, -T.infinity(accum_dtype))
91
                if kr == 0:
92
                    for i, j in T.Parallel(block_H, block_N):
93
94
                        acc_s[i, j] = T.if_then_else(k * block_N + j >= CACHE_SEQLENS[bx],
                                                     -T.infinity(accum_dtype), acc_s[i, j])
95
                T.reduce_max(acc_s, scores_max, dim=1, clear=False)
96
97
                for i in T.Parallel(block_H):
                    scores_max[i] = T.max(scores_max[i], scores_max_prev[i])
98
99
100
101
102
103
104
105
106
107
                for i in T.Parallel(block_H):
                    scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
                for i, j in T.Parallel(block_H, block_N):
                    acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
                T.reduce_sum(acc_s, scores_sum, dim=1)
                T.copy(acc_s, S_shared)
                for i in T.Parallel(block_H):
                    logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
                for i, j in T.Parallel(block_H, dv):
                    acc_o[i, j] *= scores_scale[i]
108
                T.gemm(S_shared, KV_shared, acc_o, policy=T.GemmWarpPolicy.FullCol)
109
110
111
112
113
114
115
            for i, j in T.Parallel(block_H, dv):
                acc_o[i, j] /= logsum[i]
            T.copy(acc_o, O_shared)
            T.copy(O_shared, Output[bx, by * VALID_BLOCK_H:(by + 1) * VALID_BLOCK_H, :])

    @T.macro
    def flash_mla_split_kv_kernel(
116
117
118
119
120
121
122
123
            Q: T.Tensor([batch, h_q, dv], dtype),
            Q_pe: T.Tensor([batch, h_q, dpe], dtype),
            KV: T.Tensor([batch * max_seqlen_pad, h_kv, dv], dtype),
            K_pe: T.Tensor([batch * max_seqlen_pad, h_kv, dpe], dtype),
            BLOCK_TABLE: T.Tensor([batch, max_seqlen_pad // block_size], "int32"),
            CACHE_SEQLENS: T.Tensor([batch], "int32"),
            glse: T.Tensor([batch, h_q, num_split], dtype),
            Output_partial: T.Tensor([batch, h_q, num_split, dv], dtype),
124
    ):
125
126
        with T.Kernel(
                batch, h_q // min(block_H, kv_group_num), num_split, threads=256) as (bx, by, bz):
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
            Q_shared = T.alloc_shared([block_H, dv], dtype)
            S_shared = T.alloc_shared([block_H, block_N], dtype)
            Q_pe_shared = T.alloc_shared([block_H, dpe], dtype)
            KV_shared = T.alloc_shared([block_N, dv], dtype)
            K_pe_shared = T.alloc_shared([block_N, dpe], dtype)
            O_shared = T.alloc_shared([block_H, dv], dtype)
            acc_s = T.alloc_fragment([block_H, block_N], accum_dtype)
            acc_s_cast = T.alloc_fragment([block_H, block_N], dtype)
            acc_o = T.alloc_fragment([block_H, dv], accum_dtype)
            scores_max = T.alloc_fragment([block_H], accum_dtype)
            scores_max_prev = T.alloc_fragment([block_H], accum_dtype)
            scores_scale = T.alloc_fragment([block_H], accum_dtype)
            scores_sum = T.alloc_fragment([block_H], accum_dtype)
            logsum = T.alloc_fragment([block_H], accum_dtype)

            cur_kv_head = by // (kv_group_num // block_H)
            T.use_swizzle(10)
            T.annotate_layout({
                O_shared: tilelang.layout.make_swizzled_layout(O_shared),
                S_shared: tilelang.layout.make_swizzled_layout(S_shared),
            })

            T.copy(Q[bx, by * VALID_BLOCK_H:(by + 1) * VALID_BLOCK_H, :], Q_shared)
            T.copy(Q_pe[bx, by * VALID_BLOCK_H:(by + 1) * VALID_BLOCK_H, :], Q_pe_shared)
            T.fill(acc_o, 0)
            T.fill(logsum, 0)
            T.fill(scores_max, -T.infinity(accum_dtype))

            total_blocks = T.ceildiv(CACHE_SEQLENS[bx], block_N)
            blocks_per_split = T.floordiv(total_blocks, num_split)
            remaining_blocks = T.floormod(total_blocks, num_split)
            loop_range = (blocks_per_split + T.if_then_else(bz < remaining_blocks, 1, 0))
            start = (blocks_per_split * bz + T.min(bz, remaining_blocks)) * block_N

            for k in T.Pipelined(loop_range, num_stages=2):
162
163
                kv_start = BLOCK_TABLE[bx, (start + k * block_N) //
                                       block_size] * block_size + (k * block_N) % block_size
164
165
166
167
168
169
170
171
172
173
174
175
176
177
                T.copy(KV[kv_start:kv_start + block_N, cur_kv_head, :], KV_shared)
                T.copy(K_pe[kv_start:kv_start + block_N, cur_kv_head, :], K_pe_shared)
                T.clear(acc_s)
                T.gemm(
                    Q_shared, KV_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullCol)
                T.gemm(
                    Q_pe_shared,
                    K_pe_shared,
                    acc_s,
                    transpose_B=True,
                    policy=T.GemmWarpPolicy.FullCol)
                T.copy(scores_max, scores_max_prev)
                T.fill(scores_max, -T.infinity(accum_dtype))
                for i, j in T.Parallel(block_H, block_N):
178
179
                    acc_s[i, j] = T.if_then_else(start + k * block_N + j >= CACHE_SEQLENS[bx],
                                                 -T.infinity(accum_dtype), acc_s[i, j])
180
                T.reduce_max(acc_s, scores_max, dim=1, clear=False)
181
182
                for i in T.Parallel(block_H):
                    scores_max[i] = T.max(scores_max[i], scores_max_prev[i])
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
                for i in T.Parallel(block_H):
                    scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
                for i, j in T.Parallel(block_H, block_N):
                    acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
                T.reduce_sum(acc_s, scores_sum, dim=1)
                T.copy(acc_s, S_shared)
                T.copy(S_shared, acc_s_cast)
                for i in T.Parallel(block_H):
                    logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
                for i, j in T.Parallel(block_H, dv):
                    acc_o[i, j] *= scores_scale[i]
                T.gemm(acc_s_cast, KV_shared, acc_o, policy=T.GemmWarpPolicy.FullCol)
            for i, j in T.Parallel(block_H, dv):
                acc_o[i, j] /= logsum[i]
            for i in T.Parallel(block_H):
                logsum[i] = T.log2(logsum[i]) + scores_max[i] * scale
            T.copy(logsum, glse[bx, by * VALID_BLOCK_H:(by + 1) * VALID_BLOCK_H, bz])
            T.copy(acc_o, O_shared)
            T.copy(O_shared, Output_partial[bx, by * VALID_BLOCK_H:(by + 1) * VALID_BLOCK_H, bz, :])

    @T.macro
    def combine(
205
206
207
            glse: T.Tensor([batch, h_q, num_split], dtype),
            Output_partial: T.Tensor([batch, h_q, num_split, dv], dtype),
            Output: T.Tensor([batch, h_q, dv], dtype),
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
    ):
        with T.Kernel(h_q, batch, threads=128) as (by, bz):
            po_local = T.alloc_fragment([dv], dtype)
            o_accum_local = T.alloc_fragment([dv], accum_dtype)
            lse_local_split = T.alloc_local([1], accum_dtype)
            lse_logsum_local = T.alloc_local([1], accum_dtype)
            lse_max_local = T.alloc_local([1], accum_dtype)
            scale_local = T.alloc_local([1], accum_dtype)

            T.annotate_layout({
                lse_logsum_local: T.Fragment(lse_logsum_local.shape, forward_thread_fn=lambda i: i),
            })

            T.clear(lse_logsum_local)
            T.clear(o_accum_local)
            lse_max_local[0] = -T.infinity(accum_dtype)
            for k in T.serial(num_split):
                lse_max_local[0] = T.max(lse_max_local[0], glse[bz, by, k])
            for k in T.Pipelined(num_split, num_stages=1):
                lse_local_split[0] = glse[bz, by, k]
                lse_logsum_local[0] += T.exp2(lse_local_split[0] - lse_max_local[0])
            lse_logsum_local[0] = T.log2(lse_logsum_local[0]) + lse_max_local[0]
            for k in T.serial(num_split):
                for i in T.Parallel(dv):
                    po_local[i] = Output_partial[bz, by, k, i]
                lse_local_split[0] = glse[bz, by, k]
                scale_local[0] = T.exp2(lse_local_split[0] - lse_logsum_local[0])
                for i in T.Parallel(dv):
                    o_accum_local[i] += po_local[i] * scale_local[0]
            for i in T.Parallel(dv):
                Output[bz, by, i] = o_accum_local[i]

    @T.prim_func
    def main_split(
242
243
244
245
246
247
248
249
250
            Q: T.Tensor([batch, h_q, dv], dtype),
            Q_pe: T.Tensor([batch, h_q, dpe], dtype),
            KV: T.Tensor([batch * max_seqlen_pad, h_kv, dv], dtype),
            K_pe: T.Tensor([batch * max_seqlen_pad, h_kv, dpe], dtype),
            block_table: T.Tensor([batch, max_seqlen_pad // block_size], "int32"),
            cache_seqlens: T.Tensor([batch], "int32"),
            glse: T.Tensor([batch, h_q, num_split], dtype),
            Output_partial: T.Tensor([batch, h_q, num_split, dv], dtype),
            Output: T.Tensor([batch, h_q, dv], dtype),
251
    ):
252
253
        flash_mla_split_kv_kernel(Q, Q_pe, KV, K_pe, block_table, cache_seqlens, glse,
                                  Output_partial)
254
255
256
257
        combine(glse, Output_partial, Output)

    @T.prim_func
    def main_no_split(
258
259
260
261
262
263
264
265
266
            Q: T.Tensor([batch, h_q, dv], dtype),
            Q_pe: T.Tensor([batch, h_q, dpe], dtype),
            KV: T.Tensor([batch * max_seqlen_pad, h_kv, dv], dtype),
            K_pe: T.Tensor([batch * max_seqlen_pad, h_kv, dpe], dtype),
            block_table: T.Tensor([batch, max_seqlen_pad // block_size], "int32"),
            cache_seqlens: T.Tensor([batch], "int32"),
            glse: T.Tensor([batch, h_q, num_split], dtype),
            Output_partial: T.Tensor([batch, h_q, num_split, dv], dtype),
            Output: T.Tensor([batch, h_q, dv], dtype),
267
268
269
270
271
272
273
274
    ):
        flash_mla_kernel(Q, Q_pe, KV, K_pe, block_table, cache_seqlens, Output)

    if num_split > 1:
        return main_split
    else:
        return main_no_split

275

276
277
278
279
280
281
282
283
284
285
286
def scaled_dot_product_attention(query, key, value, h_q, h_kv, is_causal=False):
    query = query.float()
    key = key.float()
    value = value.float()
    key = key.repeat_interleave(h_q // h_kv, dim=0)
    value = value.repeat_interleave(h_q // h_kv, dim=0)
    attn_weight = query @ key.transpose(-2, -1) / math.sqrt(query.size(-1))
    if is_causal:
        s_q = query.shape[-2]
        s_k = key.shape[-2]
        attn_bias = torch.zeros(s_q, s_k, dtype=query.dtype, device=query.device)
287
288
        temp_mask = torch.ones(
            s_q, s_k, dtype=torch.bool, device=query.device).tril(diagonal=s_k - s_q)
289
290
291
292
293
294
295
296
297
        attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
        attn_bias.to(query.dtype)
        attn_weight += attn_bias
    lse = attn_weight.logsumexp(dim=-1)
    attn_weight = torch.softmax(attn_weight, dim=-1, dtype=torch.float32)
    return attn_weight @ value, lse


@torch.inference_mode()
298
299
def run_torch_mla(q, block_table, blocked_k, max_seqlen_pad, block_size, b, s_q, cache_seqlens, h_q,
                  h_kv, d, dv, causal, dtype):
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
    # q: [b, s_q, h_q, d]
    # block_table: [b, max_seqlen_pad // block_size]
    # blocked_k: [b * max_seqlen_pad // block_size, block_size, h_kv, d]
    # cache_seqlens: [b]
    blocked_v = blocked_k[..., :dv]

    def ref_mla():
        out = torch.empty(b, s_q, h_q, dv, dtype=torch.float32, device=q.device)
        lse = torch.empty(b, h_q, s_q, dtype=torch.float32, device=q.device)
        for i in range(b):
            begin = i * max_seqlen_pad
            end = begin + cache_seqlens[i]
            O, LSE = scaled_dot_product_attention(
                q[i].transpose(0, 1),
                blocked_k.view(-1, h_kv, d)[begin:end].transpose(0, 1),
                blocked_v.view(-1, h_kv, dv)[begin:end].transpose(0, 1),
316
317
                h_q,
                h_kv,
318
319
320
321
322
323
324
325
326
327
                is_causal=causal,
            )
            out[i] = O.transpose(0, 1)
            lse[i] = LSE
        return out.to(dtype), lse.to(dtype)

    out_torch, _ = ref_mla()
    return out_torch


328
329
330
def run_tilelang_mla(q, block_table, blocked_k, max_seqlen_pad, block_size, b, s_q, cache_seqlens,
                     h_q, h_kv, d, dv, causal, dtype):

331
332
    assert d > dv, "mla with rope dim should be larger than no rope dim"
    q_nope, q_pe = q[..., :dv].contiguous(), q[..., dv:].contiguous()
333
334
    blocked_k_nope, blocked_k_pe = blocked_k[..., :dv].contiguous(), blocked_k[...,
                                                                               dv:].contiguous()
335
336
337
338

    dpe = d - dv
    num_kv_splits = 1
    BLOCK_N = 64
339
    BLOCK_H = min(64, h_q // h_kv)
340
    softmax_scale = d**-0.5
341

342
343
    out_partial = torch.empty(b, h_q, num_kv_splits, dv, dtype=dtype, device=q.device)
    glse = torch.empty(b, h_q, num_kv_splits, dtype=dtype, device=q.device)
344
    kernel = mla_decode_tilelang(b, h_q, h_kv, max_seqlen_pad, dv, dpe, BLOCK_N, BLOCK_H,
345
                                 num_kv_splits, block_size, softmax_scale)
346
    profiler = kernel.get_profiler(tensor_supply_type=tilelang.TensorSupplyType.Randn)
347
348

    def flash_mla_tilelang():
349
350
351
352
353
354
        out = profiler.func(
            q_nope.view(-1, h_q, dv),
            q_pe.view(-1, h_q, dpe),
            blocked_k_nope.view(-1, h_kv, dv),
            blocked_k_pe.view(-1, h_kv, dpe),
            block_table,
355
356
357
358
359
360
361
362
            cache_seqlens,
            glse,
            out_partial,
        )
        return out.view([b, s_q, h_q, dv])

    out_flash = flash_mla_tilelang()
    t = do_bench(flash_mla_tilelang)
363
364
    out_ref = run_torch_mla(q, block_table, blocked_k, max_seqlen_pad, block_size, b, s_q,
                            cache_seqlens, h_q, h_kv, d, dv, causal, dtype)
365
366
367
368
    torch.testing.assert_close(out_flash, out_ref, rtol=0.01, atol=0.01)
    print("All close")
    return out_flash, t

369

370
371
372
373
374
375
376
377
378
379
380
381
382
if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--batch', type=int, default=128, help='batch size')
    parser.add_argument('--h_q', type=int, default=128, help='q heads number')
    parser.add_argument('--h_kv', type=int, default=1, help='kv heads number')
    parser.add_argument('--cache_seqlen', type=int, default=8192, help='kv cache context length')
    parser.add_argument('--d', type=int, default=576, help='query/key head dim, d = dv + dpe')
    parser.add_argument('--dv', type=int, default=512, help='value head dim')
    args = parser.parse_args()
    b, h_q, h_kv, cache_seqlen, d, dv = args.batch, args.h_q, args.h_kv, args.cache_seqlen, args.d, args.dv

    device = "cuda"
    dtype = torch.float16
383
384

    s_q = 1  # for decode, s_q = 1
385
    block_size = 64
386
387
388
    cache_seqlens = torch.tensor([cache_seqlen + 2 * i for i in range(b)],
                                 dtype=torch.int32,
                                 device=device)
389
390
391
392
393
394
395
396
    dpe = d - dv
    causal = True

    total_seqlens = cache_seqlens.sum().item()
    mean_seqlens = cache_seqlens.float().mean().int().item()
    max_seqlen = cache_seqlens.max().item()
    max_seqlen_pad = math.ceil(max_seqlen / 256) * 256

397
    total_flops = s_q * total_seqlens * h_q * d * 2
398
399

    q = torch.randn(b, s_q, h_q, d, dtype=dtype, device=device)
400
401
402
    block_table = torch.arange(
        b * max_seqlen_pad // block_size, dtype=torch.int32,
        device=device).view(b, max_seqlen_pad // block_size)
403
    blocked_k = torch.randn(block_table.numel(), block_size, h_kv, d, dtype=dtype, device=device)
404
405
    out_flash, latency = run_tilelang_mla(q, block_table, blocked_k, max_seqlen_pad, block_size, b,
                                          s_q, cache_seqlens, h_q, h_kv, d, dv, causal, dtype)
406
407

    print("Tile-lang: {:.2f} ms".format(latency))
408
    print("Tile-lang: {:.2f} TFlops".format(total_flops / latency * 1e-9))