"src/git@developer.sourcefind.cn:gaoqiong/migraphx.git" did not exist on "12beb62250916daa07ca99912c26daedc8376652"
example_mla_decode_paged.py 18.5 KB
Newer Older
1
2
3
4
5
6
7
8
import torch
import tilelang
from tilelang.autotuner import *
import tilelang.language as T
import argparse
from tilelang.profiler import do_bench
import math

9

10
@tilelang.jit(out_idx=[8])
11
12
def mla_decode_tilelang(batch, h_q, h_kv, max_seqlen_pad, dv, dpe, block_N, block_H, num_split,
                        block_size):
13
14
15
16
17
18
19
20
21
22
    scale = (1.0 / (dv + dpe))**0.5 * 1.44269504  # log2(e)
    dtype = "float16"
    accum_dtype = "float"
    kv_group_num = h_q // h_kv
    VALID_BLOCK_H = min(block_H, kv_group_num)
    assert h_kv == 1, "h_kv must be 1"
    assert block_size >= block_N and block_size % block_N == 0, "block_size must be larger than block_N and a multiple of block_N"

    @T.macro
    def flash_mla_kernel(
23
24
25
26
27
28
29
            Q: T.Tensor([batch, h_q, dv], dtype),
            Q_pe: T.Tensor([batch, h_q, dpe], dtype),
            KV: T.Tensor([batch * max_seqlen_pad, h_kv, dv], dtype),
            K_pe: T.Tensor([batch * max_seqlen_pad, h_kv, dpe], dtype),
            BLOCK_TABLE: T.Tensor([batch, max_seqlen_pad // block_size], "int32"),
            CACHE_SEQLENS: T.Tensor([batch], "int32"),
            Output: T.Tensor([batch, h_q, dv], dtype),
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
    ):
        with T.Kernel(batch, h_q // min(block_H, kv_group_num), threads=256) as (bx, by):
            Q_shared = T.alloc_shared([block_H, dv], dtype)
            S_shared = T.alloc_shared([block_H, block_N], dtype)
            Q_pe_shared = T.alloc_shared([block_H, dpe], dtype)
            KV_shared = T.alloc_shared([block_N, dv], dtype)
            K_pe_shared = T.alloc_shared([block_N, dpe], dtype)
            O_shared = T.alloc_shared([block_H, dv], dtype)
            acc_s = T.alloc_fragment([block_H, block_N], accum_dtype)
            acc_s_cast = T.alloc_fragment([block_H, block_N], dtype)
            acc_o = T.alloc_fragment([block_H, dv], accum_dtype)
            scores_max = T.alloc_fragment([block_H], accum_dtype)
            scores_max_prev = T.alloc_fragment([block_H], accum_dtype)
            scores_scale = T.alloc_fragment([block_H], accum_dtype)
            scores_sum = T.alloc_fragment([block_H], accum_dtype)
            logsum = T.alloc_fragment([block_H], accum_dtype)

            cur_kv_head = by // (kv_group_num // block_H)
            T.use_swizzle(10)
            T.annotate_layout({
                O_shared: tilelang.layout.make_swizzled_layout(O_shared),
                S_shared: tilelang.layout.make_swizzled_layout(S_shared),
            })

            T.copy(Q[bx, by * VALID_BLOCK_H:(by + 1) * VALID_BLOCK_H, :], Q_shared)
            T.copy(Q_pe[bx, by * VALID_BLOCK_H:(by + 1) * VALID_BLOCK_H, :], Q_pe_shared)
            T.fill(acc_o, 0)
            T.fill(logsum, 0)
            T.fill(scores_max, -T.infinity(accum_dtype))

            loop_range = T.ceildiv(CACHE_SEQLENS[bx], block_N)
            for kr in T.Pipelined(loop_range, num_stages=2):
                k = loop_range - 1 - kr
63
64
                kv_start = BLOCK_TABLE[bx, (k * block_N) //
                                       block_size] * block_size + (k * block_N) % block_size
65
66
67
68
69
70
71
72
73
74
75
76
77
                T.copy(KV[kv_start:kv_start + block_N, cur_kv_head, :], KV_shared)
                T.copy(K_pe[kv_start:kv_start + block_N, cur_kv_head, :], K_pe_shared)
                T.clear(acc_s)
                T.gemm(
                    Q_shared, KV_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullCol)
                T.gemm(
                    Q_pe_shared,
                    K_pe_shared,
                    acc_s,
                    transpose_B=True,
                    policy=T.GemmWarpPolicy.FullCol)
                T.copy(scores_max, scores_max_prev)
                T.fill(scores_max, -T.infinity(accum_dtype))
78
                if kr == 0:
79
                    for i, j in T.Parallel(block_H, block_N):
80
81
                        acc_s[i, j] = T.if_then_else(k * block_N + j >= CACHE_SEQLENS[bx],
                                                     -T.infinity(accum_dtype), acc_s[i, j])
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
                T.reduce_max(acc_s, scores_max, dim=1, clear=False)
                for i in T.Parallel(block_H):
                    scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
                for i, j in T.Parallel(block_H, block_N):
                    acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
                T.reduce_sum(acc_s, scores_sum, dim=1)
                T.copy(acc_s, S_shared)
                T.copy(S_shared, acc_s_cast)
                for i in T.Parallel(block_H):
                    logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
                for i, j in T.Parallel(block_H, dv):
                    acc_o[i, j] *= scores_scale[i]
                T.gemm(acc_s_cast, KV_shared, acc_o, policy=T.GemmWarpPolicy.FullCol)
            for i, j in T.Parallel(block_H, dv):
                acc_o[i, j] /= logsum[i]
            T.copy(acc_o, O_shared)
            T.copy(O_shared, Output[bx, by * VALID_BLOCK_H:(by + 1) * VALID_BLOCK_H, :])

    @T.macro
    def flash_mla_split_kv_kernel(
102
103
104
105
106
107
108
109
            Q: T.Tensor([batch, h_q, dv], dtype),
            Q_pe: T.Tensor([batch, h_q, dpe], dtype),
            KV: T.Tensor([batch * max_seqlen_pad, h_kv, dv], dtype),
            K_pe: T.Tensor([batch * max_seqlen_pad, h_kv, dpe], dtype),
            BLOCK_TABLE: T.Tensor([batch, max_seqlen_pad // block_size], "int32"),
            CACHE_SEQLENS: T.Tensor([batch], "int32"),
            glse: T.Tensor([batch, h_q, num_split], dtype),
            Output_partial: T.Tensor([batch, h_q, num_split, dv], dtype),
110
    ):
111
112
        with T.Kernel(
                batch, h_q // min(block_H, kv_group_num), num_split, threads=256) as (bx, by, bz):
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
            Q_shared = T.alloc_shared([block_H, dv], dtype)
            S_shared = T.alloc_shared([block_H, block_N], dtype)
            Q_pe_shared = T.alloc_shared([block_H, dpe], dtype)
            KV_shared = T.alloc_shared([block_N, dv], dtype)
            K_pe_shared = T.alloc_shared([block_N, dpe], dtype)
            O_shared = T.alloc_shared([block_H, dv], dtype)
            acc_s = T.alloc_fragment([block_H, block_N], accum_dtype)
            acc_s_cast = T.alloc_fragment([block_H, block_N], dtype)
            acc_o = T.alloc_fragment([block_H, dv], accum_dtype)
            scores_max = T.alloc_fragment([block_H], accum_dtype)
            scores_max_prev = T.alloc_fragment([block_H], accum_dtype)
            scores_scale = T.alloc_fragment([block_H], accum_dtype)
            scores_sum = T.alloc_fragment([block_H], accum_dtype)
            logsum = T.alloc_fragment([block_H], accum_dtype)

            cur_kv_head = by // (kv_group_num // block_H)
            T.use_swizzle(10)
            T.annotate_layout({
                O_shared: tilelang.layout.make_swizzled_layout(O_shared),
                S_shared: tilelang.layout.make_swizzled_layout(S_shared),
            })

            T.copy(Q[bx, by * VALID_BLOCK_H:(by + 1) * VALID_BLOCK_H, :], Q_shared)
            T.copy(Q_pe[bx, by * VALID_BLOCK_H:(by + 1) * VALID_BLOCK_H, :], Q_pe_shared)
            T.fill(acc_o, 0)
            T.fill(logsum, 0)
            T.fill(scores_max, -T.infinity(accum_dtype))

            total_blocks = T.ceildiv(CACHE_SEQLENS[bx], block_N)
            blocks_per_split = T.floordiv(total_blocks, num_split)
            remaining_blocks = T.floormod(total_blocks, num_split)
            loop_range = (blocks_per_split + T.if_then_else(bz < remaining_blocks, 1, 0))
            start = (blocks_per_split * bz + T.min(bz, remaining_blocks)) * block_N

            for k in T.Pipelined(loop_range, num_stages=2):
148
149
                kv_start = BLOCK_TABLE[bx, (start + k * block_N) //
                                       block_size] * block_size + (k * block_N) % block_size
150
151
152
153
154
155
156
157
158
159
160
161
162
163
                T.copy(KV[kv_start:kv_start + block_N, cur_kv_head, :], KV_shared)
                T.copy(K_pe[kv_start:kv_start + block_N, cur_kv_head, :], K_pe_shared)
                T.clear(acc_s)
                T.gemm(
                    Q_shared, KV_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullCol)
                T.gemm(
                    Q_pe_shared,
                    K_pe_shared,
                    acc_s,
                    transpose_B=True,
                    policy=T.GemmWarpPolicy.FullCol)
                T.copy(scores_max, scores_max_prev)
                T.fill(scores_max, -T.infinity(accum_dtype))
                for i, j in T.Parallel(block_H, block_N):
164
165
                    acc_s[i, j] = T.if_then_else(start + k * block_N + j >= CACHE_SEQLENS[bx],
                                                 -T.infinity(accum_dtype), acc_s[i, j])
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
                T.reduce_max(acc_s, scores_max, dim=1, clear=False)
                for i in T.Parallel(block_H):
                    scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
                for i, j in T.Parallel(block_H, block_N):
                    acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
                T.reduce_sum(acc_s, scores_sum, dim=1)
                T.copy(acc_s, S_shared)
                T.copy(S_shared, acc_s_cast)
                for i in T.Parallel(block_H):
                    logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
                for i, j in T.Parallel(block_H, dv):
                    acc_o[i, j] *= scores_scale[i]
                T.gemm(acc_s_cast, KV_shared, acc_o, policy=T.GemmWarpPolicy.FullCol)
            for i, j in T.Parallel(block_H, dv):
                acc_o[i, j] /= logsum[i]
            for i in T.Parallel(block_H):
                logsum[i] = T.log2(logsum[i]) + scores_max[i] * scale
            T.copy(logsum, glse[bx, by * VALID_BLOCK_H:(by + 1) * VALID_BLOCK_H, bz])
            T.copy(acc_o, O_shared)
            T.copy(O_shared, Output_partial[bx, by * VALID_BLOCK_H:(by + 1) * VALID_BLOCK_H, bz, :])

    @T.macro
    def combine(
189
190
191
            glse: T.Tensor([batch, h_q, num_split], dtype),
            Output_partial: T.Tensor([batch, h_q, num_split, dv], dtype),
            Output: T.Tensor([batch, h_q, dv], dtype),
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
    ):
        with T.Kernel(h_q, batch, threads=128) as (by, bz):
            po_local = T.alloc_fragment([dv], dtype)
            o_accum_local = T.alloc_fragment([dv], accum_dtype)
            lse_local_split = T.alloc_local([1], accum_dtype)
            lse_logsum_local = T.alloc_local([1], accum_dtype)
            lse_max_local = T.alloc_local([1], accum_dtype)
            scale_local = T.alloc_local([1], accum_dtype)

            T.annotate_layout({
                lse_logsum_local: T.Fragment(lse_logsum_local.shape, forward_thread_fn=lambda i: i),
            })

            T.clear(lse_logsum_local)
            T.clear(o_accum_local)
            lse_max_local[0] = -T.infinity(accum_dtype)
            for k in T.serial(num_split):
                lse_max_local[0] = T.max(lse_max_local[0], glse[bz, by, k])
            for k in T.Pipelined(num_split, num_stages=1):
                lse_local_split[0] = glse[bz, by, k]
                lse_logsum_local[0] += T.exp2(lse_local_split[0] - lse_max_local[0])
            lse_logsum_local[0] = T.log2(lse_logsum_local[0]) + lse_max_local[0]
            for k in T.serial(num_split):
                for i in T.Parallel(dv):
                    po_local[i] = Output_partial[bz, by, k, i]
                lse_local_split[0] = glse[bz, by, k]
                scale_local[0] = T.exp2(lse_local_split[0] - lse_logsum_local[0])
                for i in T.Parallel(dv):
                    o_accum_local[i] += po_local[i] * scale_local[0]
            for i in T.Parallel(dv):
                Output[bz, by, i] = o_accum_local[i]

    @T.prim_func
    def main_split(
226
227
228
229
230
231
232
233
234
            Q: T.Tensor([batch, h_q, dv], dtype),
            Q_pe: T.Tensor([batch, h_q, dpe], dtype),
            KV: T.Tensor([batch * max_seqlen_pad, h_kv, dv], dtype),
            K_pe: T.Tensor([batch * max_seqlen_pad, h_kv, dpe], dtype),
            block_table: T.Tensor([batch, max_seqlen_pad // block_size], "int32"),
            cache_seqlens: T.Tensor([batch], "int32"),
            glse: T.Tensor([batch, h_q, num_split], dtype),
            Output_partial: T.Tensor([batch, h_q, num_split, dv], dtype),
            Output: T.Tensor([batch, h_q, dv], dtype),
235
    ):
236
237
        flash_mla_split_kv_kernel(Q, Q_pe, KV, K_pe, block_table, cache_seqlens, glse,
                                  Output_partial)
238
239
240
241
        combine(glse, Output_partial, Output)

    @T.prim_func
    def main_no_split(
242
243
244
245
246
247
248
249
250
            Q: T.Tensor([batch, h_q, dv], dtype),
            Q_pe: T.Tensor([batch, h_q, dpe], dtype),
            KV: T.Tensor([batch * max_seqlen_pad, h_kv, dv], dtype),
            K_pe: T.Tensor([batch * max_seqlen_pad, h_kv, dpe], dtype),
            block_table: T.Tensor([batch, max_seqlen_pad // block_size], "int32"),
            cache_seqlens: T.Tensor([batch], "int32"),
            glse: T.Tensor([batch, h_q, num_split], dtype),
            Output_partial: T.Tensor([batch, h_q, num_split, dv], dtype),
            Output: T.Tensor([batch, h_q, dv], dtype),
251
252
253
254
255
256
257
258
    ):
        flash_mla_kernel(Q, Q_pe, KV, K_pe, block_table, cache_seqlens, Output)

    if num_split > 1:
        return main_split
    else:
        return main_no_split

259

260
261
262
263
264
265
266
267
268
269
270
def scaled_dot_product_attention(query, key, value, h_q, h_kv, is_causal=False):
    query = query.float()
    key = key.float()
    value = value.float()
    key = key.repeat_interleave(h_q // h_kv, dim=0)
    value = value.repeat_interleave(h_q // h_kv, dim=0)
    attn_weight = query @ key.transpose(-2, -1) / math.sqrt(query.size(-1))
    if is_causal:
        s_q = query.shape[-2]
        s_k = key.shape[-2]
        attn_bias = torch.zeros(s_q, s_k, dtype=query.dtype, device=query.device)
271
272
        temp_mask = torch.ones(
            s_q, s_k, dtype=torch.bool, device=query.device).tril(diagonal=s_k - s_q)
273
274
275
276
277
278
279
280
281
        attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
        attn_bias.to(query.dtype)
        attn_weight += attn_bias
    lse = attn_weight.logsumexp(dim=-1)
    attn_weight = torch.softmax(attn_weight, dim=-1, dtype=torch.float32)
    return attn_weight @ value, lse


@torch.inference_mode()
282
283
def run_torch_mla(q, block_table, blocked_k, max_seqlen_pad, block_size, b, s_q, cache_seqlens, h_q,
                  h_kv, d, dv, causal, dtype):
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
    # q: [b, s_q, h_q, d]
    # block_table: [b, max_seqlen_pad // block_size]
    # blocked_k: [b * max_seqlen_pad // block_size, block_size, h_kv, d]
    # cache_seqlens: [b]
    blocked_v = blocked_k[..., :dv]

    def ref_mla():
        out = torch.empty(b, s_q, h_q, dv, dtype=torch.float32, device=q.device)
        lse = torch.empty(b, h_q, s_q, dtype=torch.float32, device=q.device)
        for i in range(b):
            begin = i * max_seqlen_pad
            end = begin + cache_seqlens[i]
            O, LSE = scaled_dot_product_attention(
                q[i].transpose(0, 1),
                blocked_k.view(-1, h_kv, d)[begin:end].transpose(0, 1),
                blocked_v.view(-1, h_kv, dv)[begin:end].transpose(0, 1),
300
301
                h_q,
                h_kv,
302
303
304
305
306
307
308
309
310
311
                is_causal=causal,
            )
            out[i] = O.transpose(0, 1)
            lse[i] = LSE
        return out.to(dtype), lse.to(dtype)

    out_torch, _ = ref_mla()
    return out_torch


312
313
314
def run_tilelang_mla(q, block_table, blocked_k, max_seqlen_pad, block_size, b, s_q, cache_seqlens,
                     h_q, h_kv, d, dv, causal, dtype):

315
316
    assert d > dv, "mla with rope dim should be larger than no rope dim"
    q_nope, q_pe = q[..., :dv].contiguous(), q[..., dv:].contiguous()
317
318
    blocked_k_nope, blocked_k_pe = blocked_k[..., :dv].contiguous(), blocked_k[...,
                                                                               dv:].contiguous()
319
320
321
322
323

    dpe = d - dv
    num_kv_splits = 1
    BLOCK_N = 64
    BLOCK_H = 64
324

325
326
    out_partial = torch.empty(b, h_q, num_kv_splits, dv, dtype=dtype, device=q.device)
    glse = torch.empty(b, h_q, num_kv_splits, dtype=dtype, device=q.device)
327
328
    kernel = mla_decode_tilelang(b, h_q, h_kv, max_seqlen_pad, dv, dpe, BLOCK_N, BLOCK_H,
                                 num_kv_splits, block_size)
329
    profiler = kernel.get_profiler(tensor_supply_type=tilelang.TensorSupplyType.Randn)
330
331

    def flash_mla_tilelang():
332
333
334
335
336
337
        out = profiler.func(
            q_nope.view(-1, h_q, dv),
            q_pe.view(-1, h_q, dpe),
            blocked_k_nope.view(-1, h_kv, dv),
            blocked_k_pe.view(-1, h_kv, dpe),
            block_table,
338
339
340
341
342
343
344
345
            cache_seqlens,
            glse,
            out_partial,
        )
        return out.view([b, s_q, h_q, dv])

    out_flash = flash_mla_tilelang()
    t = do_bench(flash_mla_tilelang)
346
347
    out_ref = run_torch_mla(q, block_table, blocked_k, max_seqlen_pad, block_size, b, s_q,
                            cache_seqlens, h_q, h_kv, d, dv, causal, dtype)
348
349
350
351
    torch.testing.assert_close(out_flash, out_ref, rtol=0.01, atol=0.01)
    print("All close")
    return out_flash, t

352

353
354
355
356
357
358
359
360
361
362
363
364
365
if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--batch', type=int, default=128, help='batch size')
    parser.add_argument('--h_q', type=int, default=128, help='q heads number')
    parser.add_argument('--h_kv', type=int, default=1, help='kv heads number')
    parser.add_argument('--cache_seqlen', type=int, default=8192, help='kv cache context length')
    parser.add_argument('--d', type=int, default=576, help='query/key head dim, d = dv + dpe')
    parser.add_argument('--dv', type=int, default=512, help='value head dim')
    args = parser.parse_args()
    b, h_q, h_kv, cache_seqlen, d, dv = args.batch, args.h_q, args.h_kv, args.cache_seqlen, args.d, args.dv

    device = "cuda"
    dtype = torch.float16
366
367

    s_q = 1  # for decode, s_q = 1
368
    block_size = 64
369
370
371
    cache_seqlens = torch.tensor([cache_seqlen + 2 * i for i in range(b)],
                                 dtype=torch.int32,
                                 device=device)
372
373
374
375
376
377
378
379
380
381
382
    dpe = d - dv
    causal = True

    total_seqlens = cache_seqlens.sum().item()
    mean_seqlens = cache_seqlens.float().mean().int().item()
    max_seqlen = cache_seqlens.max().item()
    max_seqlen_pad = math.ceil(max_seqlen / 256) * 256

    total_flops = s_q * total_seqlens * h_q * (d + dv) * 2

    q = torch.randn(b, s_q, h_q, d, dtype=dtype, device=device)
383
384
385
    block_table = torch.arange(
        b * max_seqlen_pad // block_size, dtype=torch.int32,
        device=device).view(b, max_seqlen_pad // block_size)
386
    blocked_k = torch.randn(block_table.numel(), block_size, h_kv, d, dtype=dtype, device=device)
387
388
    out_flash, latency = run_tilelang_mla(q, block_table, blocked_k, max_seqlen_pad, block_size, b,
                                          s_q, cache_seqlens, h_q, h_kv, d, dv, causal, dtype)
389
390

    print("Tile-lang: {:.2f} ms".format(latency))
391
    print("Tile-lang: {:.2f} TFlops".format(total_flops / latency * 1e-9))