test_tilelang_gemm_mfma_preshuffle.py 9.9 KB
Newer Older
1
import pytest
2
3
4
5
6
import torch
import tilelang.testing
from tilelang import tvm as tvm
import tilelang.language as T
from tilelang.intrinsics import make_mfma_swizzle_layout as make_swizzle_layout
7
from tilelang.intrinsics.mfma_macro_generator import MatrixCorePreshuffleIntrinEmitter
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
from tilelang.transform import simplify_prim_func

tilelang.testing.set_random_seed(0)


@simplify_prim_func
def tl_matmul(
    M,
    N,
    K,
    in_dtype,
    out_dtype,
    accum_dtype,
    a_transposed=False,
    b_transposed=True,
    k_pack=1,
    b_preshuffle=False,
25
    b_g2l_load=False,
26
27
28
):
    micro_size_x = micro_size_y = micro_size_k = 16

29
    if in_dtype in {T.float8_e4m3fnuz, T.int8}:
30
31
32
33
34
35
36
37
38
39
40
        micro_size_k = 32

    block_row_warps = 2
    block_col_warps = 2
    warp_row_tiles = 32
    warp_col_tiles = 32

    # for preshuffle_b, warp_layout = {1, 4}
    if b_preshuffle:
        block_row_warps = 1
        block_col_warps = 4
41
42
        warp_row_tiles = 64
        warp_col_tiles = 16
43

44
    chunk = 256 * k_pack
45
46
47
48
49
50
51
52
53
54
55

    pack_size_k = micro_size_k * k_pack

    shared_scope = "shared"

    block_M = block_row_warps * warp_row_tiles
    block_N = block_col_warps * warp_col_tiles
    block_K = chunk

    A_shape = (K, M) if a_transposed else (M, K)
    if b_preshuffle:
56
57
58
59
60
        B_shape = (
            (N // micro_size_y, K // pack_size_k, micro_size_y, pack_size_k)
            if b_transposed
            else (K // pack_size_k, N // micro_size_y, pack_size_k, micro_size_y)
        )
61
62
    else:
        B_shape = (N, K) if b_transposed else (K, N)
63

64
65
    A_shared_shape = (block_K, block_M) if a_transposed else (block_M, block_K)
    if b_preshuffle:
66
67
68
69
70
        B_shared_shape = (
            (block_N // micro_size_y, block_K // pack_size_k, micro_size_y, pack_size_k)
            if b_transposed
            else (block_K // pack_size_k, block_N // micro_size_y, pack_size_k, micro_size_y)
        )
71
72
73
74
75
76
77
78
79
80
81
82
    else:
        B_shared_shape = (block_N, block_K) if b_transposed else (block_K, block_N)

    warp_size = 64
    threads = warp_size * (block_row_warps * block_col_warps)
    local_size_a = (k_pack * micro_size_x * micro_size_k) // warp_size
    local_size_b = (k_pack * micro_size_y * micro_size_k) // warp_size
    local_size_c = (micro_size_x * micro_size_y) // warp_size
    warp_rows = warp_row_tiles // micro_size_x
    warp_cols = warp_col_tiles // micro_size_y

    # MMA Wrapper to Auto Generate Code for MMA
83
    mfma_emitter = MatrixCorePreshuffleIntrinEmitter(
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
        a_dtype=in_dtype,
        b_dtype=in_dtype,
        accum_dtype=accum_dtype,
        a_transposed=a_transposed,
        b_transposed=b_transposed,
        block_row_warps=block_row_warps,
        block_col_warps=block_col_warps,
        warp_row_tiles=warp_row_tiles,
        warp_col_tiles=warp_col_tiles,
        chunk=chunk,
        k_pack=k_pack,
        b_preshuffle=b_preshuffle,
    )

    @T.prim_func
    def main(
100
101
102
        A: T.Tensor(A_shape, in_dtype),
        B: T.Tensor(B_shape, in_dtype),
        C: T.Tensor((M, N), out_dtype),
103
104
105
106
107
108
109
110
    ):
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=threads) as (bx, by):
            A_shared = T.alloc_shared(A_shared_shape, in_dtype, scope=shared_scope)
            B_shared = T.alloc_shared(B_shared_shape, in_dtype, scope=shared_scope)
            A_local = T.alloc_local((warp_rows * local_size_a), in_dtype)
            B_local = T.alloc_local((warp_cols * local_size_b), in_dtype)
            C_local = T.alloc_local((warp_rows * warp_cols * local_size_c), accum_dtype)

111
112
113
114
115
            T.annotate_layout(
                {
                    A_shared: make_swizzle_layout(A_shared),
                }
            )
116

117
118
119
            num_ko = K // block_K
            num_ki = block_K // (k_pack * micro_size_k)

120
121
122
123
124
            # Improve L2 Cache
            T.use_swizzle(panel_size=10)

            T.clear(C_local)

125
            for ko in T.Pipelined(num_ko, num_stages=0):
126
127
128
129
130
131
132
                # Load A into shared memory
                if a_transposed:
                    T.copy(A[ko * block_K, by * block_M], A_shared)
                else:
                    T.copy(A[by * block_M, ko * block_K], A_shared)

                # Load B into shared memory
133
                if b_g2l_load is False:
134
                    if b_transposed:
135
136
                        for j, k, jj, kk in T.Parallel(block_N // micro_size_y, block_K // pack_size_k, micro_size_y, pack_size_k):
                            B_shared[j, k, jj, kk] = B[bx * block_N // micro_size_y + j, ko * block_K // pack_size_k + k, jj, kk]
137
                    else:
138
139
                        for k, j, kk, jj in T.Parallel(block_K // pack_size_k, block_N // micro_size_y, pack_size_k, micro_size_y):
                            B_shared[k, j, kk, jj] = B[ko * block_K // pack_size_k + k, bx * block_N // micro_size_y + j, kk, jj]
140

141
142
                for ki in T.serial(0, num_ki):
                    # Load A S2L
143
144
145
146
147
148
                    mfma_emitter.ldmatrix_a(
                        A_local,
                        A_shared,
                        ki,
                    )

149
150
151
152
153
154
155
156
157
158
                    if b_g2l_load:
                        # Load B G2L
                        mfma_emitter.ldmatrix_b(B_local, B, ki + ko * num_ki, pid_m=by, pid_n=bx)
                    else:
                        # Load B S2L
                        mfma_emitter.ldmatrix_b(
                            B_local,
                            B_shared,
                            ki,
                        )
159
160
161
162
163

                    # Perform Matrix Multiplication
                    mfma_emitter.mfma(A_local, B_local, C_local)

            # Perform STMatrix
164
165
166
167
168
169
            mfma_emitter.stmatrix(
                C_local,
                C,
                pid_m=by,
                pid_n=bx,
            )
170
171
172
173
174

    return main


def shuffle_weight(
175
176
177
178
    x: torch.Tensor,
    layout=(16, 32),
    k_pack=1,
    is_transpose=False,
179
180
181
182
183
184
185
186
187
188
189
190
191
192
) -> torch.Tensor:
    IN, IK = layout
    BK = IK * k_pack
    BN = IN

    N, K = (x.shape[-2], x.shape[-1]) if is_transpose else (x.shape[-1], x.shape[-2])
    assert N % BN == 0
    assert K % BK == 0

    x = x.view(N // BN, BN, K // BK, BK) if is_transpose else x.view(K // BK, BK, N // BN, BN)
    x = x.permute(0, 2, 1, 3)
    return x.contiguous()


193
194
195
196
197
198
def assert_tl_matmul_correctness(
    M,
    N,
    K,
    in_dtype,
    out_dtype,
199
    accum_dtype=T.float32,
200
201
202
203
204
205
206
    a_transposed=False,
    b_transposed=True,
    k_pack=1,
    b_preshuffle=False,
    b_g2l_load=False,
):
    matmul = tl_matmul(M, N, K, in_dtype, out_dtype, accum_dtype, a_transposed, b_transposed, k_pack, b_preshuffle, b_g2l_load)
207
208
209
210
211
212
213
    print(matmul)
    kernel = tilelang.compile(matmul)
    src_code = kernel.get_kernel_source()
    # src_code is the generated cuda source
    assert src_code is not None
    A_shape = (K, M) if a_transposed else (M, K)
    B_shape = (N, K) if b_transposed else (K, N)
214
    if in_dtype == T.int8:
215
216
        A = torch.randint(-128, 127, A_shape, device="cuda", dtype=torch.int8)
        B = torch.randint(-128, 127, B_shape, device="cuda", dtype=torch.int8)
217
    elif in_dtype == T.float8_e4m3fnuz:
218
219
        A = torch.rand(A_shape, device="cuda", dtype=torch.float16).to(getattr(torch, in_dtype))
        B = torch.rand(B_shape, device="cuda", dtype=torch.float16).to(getattr(torch, in_dtype))
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
    else:
        A = torch.rand(A_shape, device="cuda", dtype=getattr(torch, in_dtype))
        B = torch.rand(B_shape, device="cuda", dtype=getattr(torch, in_dtype))

    C = torch.zeros(M, N, device="cuda", dtype=getattr(torch, out_dtype))

    B_preshuffle = B
    if b_preshuffle:
        B_preshuffle = shuffle_weight(B_preshuffle, k_pack=k_pack, is_transpose=b_transposed)
        kernel(A, B_preshuffle, C)
    else:
        kernel(A, B, C)

    print(kernel.get_kernel_source())

    profiler = kernel.get_profiler()

    latency = profiler.do_bench()

    # Ensure that the latency is not None
    assert latency is not None

    if a_transposed and b_transposed:
        # Get Reference Result
244
        ref_c = torch.matmul(A.T.to(torch.float32), B.T.to(torch.float32)).to(getattr(torch, out_dtype))
245
246
    elif a_transposed and not b_transposed:
        # Get Reference Result
247
        ref_c = torch.matmul(A.Tto(torch.float32), B.to(torch.float32)).to(getattr(torch, out_dtype))
248
249
    elif not a_transposed and b_transposed:
        # Get Reference Result
250
        ref_c = torch.matmul(A.to(torch.float32), B.T.to(torch.float32)).to(getattr(torch, out_dtype))
251
252
253
254
255
256
    else:
        # Get Reference Result
        ref_c = torch.matmul(A.to(torch.float32), B.to(torch.float32)).to(getattr(torch, out_dtype))

    print(C)
    print(ref_c)
257

258
259
260
    torch.testing.assert_close(C, ref_c, rtol=1e-2, atol=1e-2)


261
262
263
@pytest.mark.parametrize(
    "M, N, K, in_dtype, out_dtype, accum_dtype, a_transposed, b_transposed, k_pack, b_preshuffle, b_g2l_load",
    [
264
265
266
267
268
269
270
271
        (256, 256, 512, T.int8, T.int32, T.int32, False, True, 1, True, False),
        (256, 256, 512, T.int8, T.int32, T.int32, False, False, 1, True, False),
        (256, 256, 512, T.int8, T.int32, T.int32, False, True, 2, True, False),
        (256, 256, 512, T.int8, T.int32, T.int32, False, False, 2, True, False),
        (256, 256, 512, T.float8_e4m3fnuz, T.float32, T.float32, False, True, 1, True, False),
        (256, 256, 512, T.float8_e4m3fnuz, T.float32, T.float32, False, False, 1, True, False),
        (256, 256, 512, T.float8_e4m3fnuz, T.float32, T.float32, False, True, 2, True, False),
        (256, 256, 512, T.float8_e4m3fnuz, T.float32, T.float32, False, False, 2, True, False),
272
273
    ],
)
274
@tilelang.testing.requires_rocm
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
def test_assert_tl_matmul(
    M,
    N,
    K,
    in_dtype,
    out_dtype,
    accum_dtype,
    a_transposed,
    b_transposed,
    k_pack,
    b_preshuffle,
    b_g2l_load,
):
    assert_tl_matmul_correctness(
        M,
        N,
        K,
        in_dtype,
        out_dtype,
        accum_dtype=accum_dtype,
        a_transposed=a_transposed,
        b_transposed=b_transposed,
        k_pack=k_pack,
        b_preshuffle=b_preshuffle,
        b_g2l_load=b_g2l_load,
    )
301

302
303
304

if __name__ == "__main__":
    tilelang.testing.main()