"src/include/blockwise_batched_gemm.hpp" did not exist on "f35c64eb78af4754e78f8746c8e28d2ac8b68e80"
test_tilelang_gemm_mfma_preshuffle.py 10.6 KB
Newer Older
1
2
3
4
5
import torch
import tilelang.testing
from tilelang import tvm as tvm
import tilelang.language as T
from tilelang.intrinsics import make_mfma_swizzle_layout as make_swizzle_layout
6
from tilelang.intrinsics.mfma_macro_generator import MatrixCorePreshuffleIntrinEmitter
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
from tilelang.transform import simplify_prim_func

tilelang.testing.set_random_seed(0)


@simplify_prim_func
def tl_matmul(
    M,
    N,
    K,
    in_dtype,
    out_dtype,
    accum_dtype,
    a_transposed=False,
    b_transposed=True,
    k_pack=1,
    b_preshuffle=False,
24
    b_g2l_load=False,
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
):

    micro_size_x = micro_size_y = micro_size_k = 16

    if in_dtype in {"float8_e4m3fnuz", "int8"}:
        micro_size_k = 32

    block_row_warps = 2
    block_col_warps = 2
    warp_row_tiles = 32
    warp_col_tiles = 32

    # for preshuffle_b, warp_layout = {1, 4}
    if b_preshuffle:
        block_row_warps = 1
        block_col_warps = 4
41
42
        warp_row_tiles = 64
        warp_col_tiles = 16
43

44
    chunk = 256 * k_pack
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

    pack_size_k = micro_size_k * k_pack

    shared_scope = "shared"

    block_M = block_row_warps * warp_row_tiles
    block_N = block_col_warps * warp_col_tiles
    block_K = chunk

    A_shape = (K, M) if a_transposed else (M, K)
    if b_preshuffle:
        B_shape = (N // micro_size_y, K // pack_size_k, micro_size_y,
                   pack_size_k) if b_transposed else (K // pack_size_k, N // micro_size_y,
                                                      pack_size_k, micro_size_y)
    else:
        B_shape = (N, K) if b_transposed else (K, N)
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
    A_shared_shape = (block_K, block_M) if a_transposed else (block_M, block_K)
    if b_preshuffle:
        B_shared_shape = (block_N // micro_size_y, block_K // pack_size_k, micro_size_y,
                          pack_size_k) if b_transposed else (block_K // pack_size_k,
                                                             block_N // micro_size_y, pack_size_k,
                                                             micro_size_y)
    else:
        B_shared_shape = (block_N, block_K) if b_transposed else (block_K, block_N)

    warp_size = 64
    threads = warp_size * (block_row_warps * block_col_warps)
    local_size_a = (k_pack * micro_size_x * micro_size_k) // warp_size
    local_size_b = (k_pack * micro_size_y * micro_size_k) // warp_size
    local_size_c = (micro_size_x * micro_size_y) // warp_size
    warp_rows = warp_row_tiles // micro_size_x
    warp_cols = warp_col_tiles // micro_size_y

    # MMA Wrapper to Auto Generate Code for MMA
80
    mfma_emitter = MatrixCorePreshuffleIntrinEmitter(
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
        a_dtype=in_dtype,
        b_dtype=in_dtype,
        accum_dtype=accum_dtype,
        a_transposed=a_transposed,
        b_transposed=b_transposed,
        block_row_warps=block_row_warps,
        block_col_warps=block_col_warps,
        warp_row_tiles=warp_row_tiles,
        warp_col_tiles=warp_col_tiles,
        chunk=chunk,
        k_pack=k_pack,
        b_preshuffle=b_preshuffle,
    )

    @T.prim_func
    def main(
            A: T.Tensor(A_shape, in_dtype),
            B: T.Tensor(B_shape, in_dtype),
            C: T.Tensor((M, N), out_dtype),
    ):
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=threads) as (bx, by):

            A_shared = T.alloc_shared(A_shared_shape, in_dtype, scope=shared_scope)
            B_shared = T.alloc_shared(B_shared_shape, in_dtype, scope=shared_scope)
            A_local = T.alloc_local((warp_rows * local_size_a), in_dtype)
            B_local = T.alloc_local((warp_cols * local_size_b), in_dtype)
            C_local = T.alloc_local((warp_rows * warp_cols * local_size_c), accum_dtype)

            T.annotate_layout({
                A_shared: make_swizzle_layout(A_shared),
            })

113
114
115
            num_ko = K // block_K
            num_ki = block_K // (k_pack * micro_size_k)

116
117
118
119
120
            # Improve L2 Cache
            T.use_swizzle(panel_size=10)

            T.clear(C_local)

121
            for ko in T.Pipelined(num_ko, num_stages=0):
122
123
124
125
126
127
128
129

                # Load A into shared memory
                if a_transposed:
                    T.copy(A[ko * block_K, by * block_M], A_shared)
                else:
                    T.copy(A[by * block_M, ko * block_K], A_shared)

                # Load B into shared memory
130
                if b_g2l_load is False:
131
132
133
134
135
136
137
138
139
140
141
142
143
                    if b_transposed:
                        for j, k, jj, kk in T.Parallel(block_N // micro_size_y,
                                                       block_K // pack_size_k, micro_size_y,
                                                       pack_size_k):
                            B_shared[j, k, jj, kk] = B[bx * block_N // micro_size_y + j,
                                                       ko * block_K // pack_size_k + k, jj, kk]
                    else:
                        for k, j, kk, jj in T.Parallel(block_K // pack_size_k,
                                                       block_N // micro_size_y, pack_size_k,
                                                       micro_size_y):
                            B_shared[k, j, kk, jj] = B[ko * block_K // pack_size_k + k,
                                                       bx * block_N // micro_size_y + j, kk, jj]

144
                for ki in T.serial(0, num_ki):
145

146
                    # Load A S2L
147
148
149
150
151
152
                    mfma_emitter.ldmatrix_a(
                        A_local,
                        A_shared,
                        ki,
                    )

153
154
155
156
157
158
159
160
161
162
                    if b_g2l_load:
                        # Load B G2L
                        mfma_emitter.ldmatrix_b(B_local, B, ki + ko * num_ki, pid_m=by, pid_n=bx)
                    else:
                        # Load B S2L
                        mfma_emitter.ldmatrix_b(
                            B_local,
                            B_shared,
                            ki,
                        )
163
164
165
166
167

                    # Perform Matrix Multiplication
                    mfma_emitter.mfma(A_local, B_local, C_local)

            # Perform STMatrix
168
169
170
171
172
173
            mfma_emitter.stmatrix(
                C_local,
                C,
                pid_m=by,
                pid_n=bx,
            )
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

    return main


def shuffle_weight(
        x: torch.Tensor,
        layout=(16, 32),
        k_pack=1,
        is_transpose=False,
) -> torch.Tensor:
    IN, IK = layout
    BK = IK * k_pack
    BN = IN

    N, K = (x.shape[-2], x.shape[-1]) if is_transpose else (x.shape[-1], x.shape[-2])
    assert N % BN == 0
    assert K % BK == 0

    x = x.view(N // BN, BN, K // BK, BK) if is_transpose else x.view(K // BK, BK, N // BN, BN)
    x = x.permute(0, 2, 1, 3)
    return x.contiguous()


def assert_tl_matmul_correctness(M,
                                 N,
                                 K,
                                 in_dtype,
                                 out_dtype,
                                 accum_dtype="float32",
                                 a_transposed=False,
                                 b_transposed=True,
                                 k_pack=1,
206
207
                                 b_preshuffle=False,
                                 b_g2l_load=False):
208
    matmul = tl_matmul(M, N, K, in_dtype, out_dtype, accum_dtype, a_transposed, b_transposed,
209
                       k_pack, b_preshuffle, b_g2l_load)
210
211
212
213
214
215
216
217
218
219
    print(matmul)
    kernel = tilelang.compile(matmul)
    src_code = kernel.get_kernel_source()
    # src_code is the generated cuda source
    assert src_code is not None
    A_shape = (K, M) if a_transposed else (M, K)
    B_shape = (N, K) if b_transposed else (K, N)
    if in_dtype == "int8":
        A = torch.randint(-128, 127, A_shape, device="cuda", dtype=torch.int8)
        B = torch.randint(-128, 127, B_shape, device="cuda", dtype=torch.int8)
220
221
222
    elif in_dtype == "float8_e4m3fnuz":
        A = torch.rand(A_shape, device="cuda", dtype=torch.float16).to(getattr(torch, in_dtype))
        B = torch.rand(B_shape, device="cuda", dtype=torch.float16).to(getattr(torch, in_dtype))
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
    else:
        A = torch.rand(A_shape, device="cuda", dtype=getattr(torch, in_dtype))
        B = torch.rand(B_shape, device="cuda", dtype=getattr(torch, in_dtype))

    C = torch.zeros(M, N, device="cuda", dtype=getattr(torch, out_dtype))

    B_preshuffle = B
    if b_preshuffle:
        B_preshuffle = shuffle_weight(B_preshuffle, k_pack=k_pack, is_transpose=b_transposed)
        kernel(A, B_preshuffle, C)
    else:
        kernel(A, B, C)

    print(kernel.get_kernel_source())

    profiler = kernel.get_profiler()

    latency = profiler.do_bench()

    # Ensure that the latency is not None
    assert latency is not None

    if a_transposed and b_transposed:
        # Get Reference Result
        ref_c = torch.matmul(A.T.to(torch.float32),
                             B.T.to(torch.float32)).to(getattr(torch, out_dtype))
    elif a_transposed and not b_transposed:
        # Get Reference Result
        ref_c = torch.matmul(A.Tto(torch.float32),
                             B.to(torch.float32)).to(getattr(torch, out_dtype))
    elif not a_transposed and b_transposed:
        # Get Reference Result
        ref_c = torch.matmul(A.to(torch.float32),
                             B.T.to(torch.float32)).to(getattr(torch, out_dtype))
    else:
        # Get Reference Result
        ref_c = torch.matmul(A.to(torch.float32), B.to(torch.float32)).to(getattr(torch, out_dtype))

    print(C)
    print(ref_c)
263

264
265
266
267
268
269
    torch.testing.assert_close(C, ref_c, rtol=1e-2, atol=1e-2)


@tilelang.testing.requires_rocm
def test_assert_tl_matmul():
    assert_tl_matmul_correctness(
270
        256, 256, 512, "int8", "int32", accum_dtype="int32", b_preshuffle=True)
271
    assert_tl_matmul_correctness(
272
        256, 256, 512, "int8", "int32", accum_dtype="int32", b_preshuffle=True)
273
    assert_tl_matmul_correctness(
274
        256, 256, 512, "int8", "int32", b_transposed=False, accum_dtype="int32", b_preshuffle=True)
275
276

    assert_tl_matmul_correctness(
277
        256, 256, 512, "int8", "int32", accum_dtype="int32", k_pack=2, b_preshuffle=True)
278
279
280
    assert_tl_matmul_correctness(
        256,
        256,
281
        512,
282
283
284
285
286
287
288
        "int8",
        "int32",
        b_transposed=False,
        accum_dtype="int32",
        k_pack=2,
        b_preshuffle=True)

289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
    assert_tl_matmul_correctness(256, 256, 512, "float8_e4m3fnuz", "float32", b_preshuffle=True)
    assert_tl_matmul_correctness(
        256, 256, 512, "float8_e4m3fnuz", "float32", b_transposed=False, b_preshuffle=True)
    assert_tl_matmul_correctness(
        256, 256, 512, "float8_e4m3fnuz", "float32", k_pack=2, b_preshuffle=True)
    assert_tl_matmul_correctness(
        256,
        256,
        512,
        "float8_e4m3fnuz",
        "float32",
        k_pack=2,
        b_transposed=False,
        b_preshuffle=True)

304
305
306

if __name__ == "__main__":
    tilelang.testing.main()