example_gqa_fwd_bshd.py 10.7 KB
Newer Older
Lei Wang's avatar
Lei Wang committed
1
2
3
4
5
6
7
8
9
10
import torch
import torch.nn.functional as F
import tilelang
from tilelang.autotuner import *
import tilelang.language as T
import itertools
import argparse
from functools import partial


11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
class FlashAttentionTuneSpace:
    def __init__(
        self,
        block_sizes=(64, 128, 256),
        thread_options=(128, 256, 512),
        num_stages_range=(2, 3),
        max_shared_mem=100 * 1024,
        warp_alignment=16,
        dim=128,
        dtype_bytes=2,
    ):
        self.block_sizes = block_sizes
        self.thread_options = thread_options
        self.num_stages_range = num_stages_range
        self.max_shared_mem = max_shared_mem
        self.warp_alignment = warp_alignment
        self.dim = dim
        self.dtype_bytes = dtype_bytes


def get_configs(user_config=None):
    config = user_config or FlashAttentionTuneSpace()
    valid_configs = []

    for block_M, block_N in itertools.product(config.block_sizes, repeat=2):
        for threads in config.thread_options:
            assert threads % 32 == 0
            warp_count = threads // 32
            warp_M = block_M // warp_count
            warp_N = block_N // warp_count

42
            if warp_M % config.warp_alignment != 0 or warp_N % config.warp_alignment != 0:
43
44
45
46
47
48
49
                continue

            shared_mem = 2 * config.dtype_bytes * config.dim * (block_M + block_N)
            if shared_mem > config.max_shared_mem:
                continue

            for num_stages in config.num_stages_range:
50
51
52
53
54
55
56
57
                valid_configs.append(
                    {
                        "block_M": block_M,
                        "block_N": block_N,
                        "num_stages": num_stages,
                        "threads": threads,
                    }
                )
58
    return valid_configs
Lei Wang's avatar
Lei Wang committed
59
60


61
@autotune(configs=get_configs(), warmup=10, rep=10)
62
@tilelang.jit(
63
64
    out_idx=[3],
    pass_configs={
65
        tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
66
67
68
69
    },
)
def flashattn(batch, heads, seq_len, dim, is_causal, groups=1, block_M=64, block_N=64, num_stages=0, threads=128):
    scale = (1.0 / dim) ** 0.5 * 1.44269504  # log2(e)
Lei Wang's avatar
Lei Wang committed
70
71
72
    head_kv = heads // groups
    q_shape = [batch, seq_len, heads, dim]
    kv_shape = [batch, seq_len, head_kv, dim]
73
74
    dtype = T.float16
    accum_dtype = T.float32
Lei Wang's avatar
Lei Wang committed
75

76
77
78
79
80
81
82
83
84
85
86
    @T.macro
    def MMA0(
        K: T.Tensor(kv_shape, dtype),
        Q_shared: T.SharedBuffer([block_M, dim], dtype),
        K_shared: T.SharedBuffer([block_N, dim], dtype),
        acc_s: T.FragmentBuffer([block_M, block_N], accum_dtype),
        k: T.int32,
        bx: T.int32,
        by: T.int32,
        bz: T.int32,
    ):
87
        T.copy(K[bz, k * block_N : (k + 1) * block_N, by // groups, :], K_shared)
88
89
        if is_causal:
            for i, j in T.Parallel(block_M, block_N):
90
                acc_s[i, j] = T.if_then_else(bx * block_M + i >= k * block_N + j, 0, -T.infinity(acc_s.dtype))
91
        else:
92
            for i, j in T.Parallel(block_M, block_N):
93
                acc_s[i, j] = T.if_then_else(k * block_N + j >= seq_len, -T.infinity(acc_s.dtype), 0)
94
95
96
97
98
        T.gemm(Q_shared, K_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)

    @T.macro
    def MMA1(
        V: T.Tensor(kv_shape, dtype),
99
        V_shared: T.SharedBuffer([block_N, dim], dtype),
100
101
102
103
104
105
        acc_s_cast: T.FragmentBuffer([block_M, block_N], dtype),
        acc_o: T.FragmentBuffer([block_M, dim], accum_dtype),
        k: T.int32,
        by: T.int32,
        bz: T.int32,
    ):
106
        T.copy(V[bz, k * block_N : (k + 1) * block_N, by // groups, :], V_shared)
107
        T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)
Lei Wang's avatar
Lei Wang committed
108

109
110
    @T.macro
    def Softmax(
111
112
113
114
115
116
117
        acc_s: T.FragmentBuffer([block_M, block_N], accum_dtype),
        acc_s_cast: T.FragmentBuffer([block_M, block_N], dtype),
        scores_max: T.FragmentBuffer([block_M], accum_dtype),
        scores_max_prev: T.FragmentBuffer([block_M], accum_dtype),
        scores_scale: T.FragmentBuffer([block_M], accum_dtype),
        scores_sum: T.FragmentBuffer([block_M], accum_dtype),
        logsum: T.FragmentBuffer([block_M], accum_dtype),
118
119
120
121
    ):
        T.copy(scores_max, scores_max_prev)
        T.fill(scores_max, -T.infinity(accum_dtype))
        T.reduce_max(acc_s, scores_max, dim=1, clear=False)
122
123
        for i in T.Parallel(block_M):
            scores_max[i] = T.max(scores_max[i], scores_max_prev[i])
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
        # To do causal softmax, we need to set the scores_max to 0 if it is -inf
        # This process is called Check_inf in FlashAttention3 code, and it only need to be done
        # in the first ceil_div(kBlockM, kBlockN) steps.
        # for i in T.Parallel(block_M):
        #     scores_max[i] = T.if_then_else(scores_max[i] == -T.infinity(accum_dtype), 0, scores_max[i])
        for i in T.Parallel(block_M):
            scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
        for i, j in T.Parallel(block_M, block_N):
            # Instead of computing exp(x - max), we compute exp2(x * log_2(e) -
            # max * log_2(e)) This allows the compiler to use the ffma
            # instruction instead of fadd and fmul separately.
            acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
        T.reduce_sum(acc_s, scores_sum, dim=1)
        for i in T.Parallel(block_M):
            logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
        T.copy(acc_s, acc_s_cast)

    @T.macro
    def Rescale(
143
144
        acc_o: T.FragmentBuffer([block_M, dim], accum_dtype),
        scores_scale: T.FragmentBuffer([block_M], accum_dtype),
145
146
147
    ):
        for i, j in T.Parallel(block_M, dim):
            acc_o[i, j] *= scores_scale[i]
Lei Wang's avatar
Lei Wang committed
148

149
150
    @T.prim_func
    def main(
151
152
153
154
        Q: T.Tensor(q_shape, dtype),
        K: T.Tensor(kv_shape, dtype),
        V: T.Tensor(kv_shape, dtype),
        Output: T.Tensor(q_shape, dtype),
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
    ):
        with T.Kernel(T.ceildiv(seq_len, block_M), heads, batch, threads=threads) as (bx, by, bz):
            Q_shared = T.alloc_shared([block_M, dim], dtype)
            K_shared = T.alloc_shared([block_N, dim], dtype)
            V_shared = T.alloc_shared([block_N, dim], dtype)
            O_shared = T.alloc_shared([block_M, dim], dtype)
            acc_s = T.alloc_fragment([block_M, block_N], accum_dtype)
            acc_s_cast = T.alloc_fragment([block_M, block_N], dtype)
            acc_o = T.alloc_fragment([block_M, dim], accum_dtype)
            scores_max = T.alloc_fragment([block_M], accum_dtype)
            scores_max_prev = T.alloc_fragment([block_M], accum_dtype)
            scores_scale = T.alloc_fragment([block_M], accum_dtype)
            scores_sum = T.alloc_fragment([block_M], accum_dtype)
            logsum = T.alloc_fragment([block_M], accum_dtype)

170
            T.copy(Q[bz, bx * block_M : (bx + 1) * block_M, by, :], Q_shared)
171
172
            T.fill(acc_o, 0)
            T.fill(logsum, 0)
Lei Wang's avatar
Lei Wang committed
173
174
            T.fill(scores_max, -T.infinity(accum_dtype))

175
            loop_range = (
176
177
                T.min(T.ceildiv(seq_len, block_N), T.ceildiv((bx + 1) * block_M, block_N)) if is_causal else T.ceildiv(seq_len, block_N)
            )
Lei Wang's avatar
Lei Wang committed
178

179
180
            for k in T.Pipelined(loop_range, num_stages=num_stages):
                MMA0(K, Q_shared, K_shared, acc_s, k, bx, by, bz)
181
                Softmax(acc_s, acc_s_cast, scores_max, scores_max_prev, scores_scale, scores_sum, logsum)
182
183
184
185
186
                Rescale(acc_o, scores_scale)
                MMA1(V, V_shared, acc_s_cast, acc_o, k, by, bz)
            for i, j in T.Parallel(block_M, dim):
                acc_o[i, j] /= logsum[i]
            T.copy(acc_o, O_shared)
187
            T.copy(O_shared, Output[bz, bx * block_M : (bx + 1) * block_M, by, :])
Lei Wang's avatar
Lei Wang committed
188

189
    return main
Lei Wang's avatar
Lei Wang committed
190
191
192
193
194
195
196


def ref_program(Q, K, V, is_causal, groups=1):
    # Q: [B, T, HQ, D]
    # K: [B, T, HK, D]
    # V: [B, T, HV, D]
    # HQ = HKV * groups
197
198
    assert Q.size(2) == K.size(2) * groups, f"Q.size(2): {Q.size(2)}, K.size(2): {K.size(2)}, groups: {groups}"
    assert Q.size(2) == V.size(2) * groups, f"Q.size(2): {Q.size(2)}, V.size(2): {V.size(2)}, groups: {groups}"
Lei Wang's avatar
Lei Wang committed
199
200
201
202

    dim = Q.size(-1)
    K = K.repeat_interleave(groups, dim=2)
    V = V.repeat_interleave(groups, dim=2)
203
    scores = torch.einsum("bqhd,bkhd->bhqk", Q, K)
Lei Wang's avatar
Lei Wang committed
204
205
206
207
208
    scores = scores / torch.sqrt(torch.tensor(dim, dtype=scores.dtype))
    if is_causal:
        seq_len = Q.size(1)
        mask = torch.tril(torch.ones(seq_len, seq_len, device=scores.device))
        mask = mask.unsqueeze(0).unsqueeze(0)
209
        scores = scores.masked_fill(mask == 0, float("-inf"))
Lei Wang's avatar
Lei Wang committed
210
    attention_weights = F.softmax(scores, dim=-1)
211
    output = torch.einsum("bhqk,bkhd->bqhd", attention_weights, V)
Lei Wang's avatar
Lei Wang committed
212
213
214
    return output


215
216
217
def main(
    batch: int = 1, heads: int = 64, seq_len: int = 4096, dim: int = 128, is_causal: bool = False, groups: int = 16, tune: bool = False
):
Lei Wang's avatar
Lei Wang committed
218
219
220
221
222
    flops_per_matmul = 2.0 * batch * heads * seq_len * seq_len * dim
    total_flops = 2 * flops_per_matmul
    if is_causal:
        total_flops *= 0.5

223
224
    if not tune:
        kernel = flashattn(batch, heads, seq_len, dim, is_causal, groups=groups, block_M=64, block_N=64, num_stages=2, threads=128)
225
        ref_program_processed = partial(ref_program, is_causal=is_causal, groups=groups)
226
        profiler = kernel.get_profiler(tensor_supply_type=tilelang.TensorSupplyType.Normal)
227
        profiler.assert_allclose(ref_program_processed, rtol=0.01, atol=0.01)
Lei Wang's avatar
Lei Wang committed
228
        print("All checks pass.")
229
        latency = profiler.do_bench(ref_program_processed, warmup=500)
Lei Wang's avatar
Lei Wang committed
230
231
        print("Ref: {:.2f} ms".format(latency))
        print("Ref: {:.2f} TFlops".format(total_flops / latency * 1e-9))
232
        latency = profiler.do_bench(warmup=500)
Lei Wang's avatar
Lei Wang committed
233
234
235
        print("Tile-lang: {:.2f} ms".format(latency))
        print("Tile-lang: {:.2f} TFlops".format(total_flops / latency * 1e-9))
    else:
236
237
238
239
        kernel = flashattn(batch, heads, seq_len, dim, is_causal)
        best_latency = kernel.latency
        best_config = kernel.config
        ref_latency = kernel.ref_latency
Lei Wang's avatar
Lei Wang committed
240
241
242
        print(f"Best latency: {best_latency}")
        print(f"Best TFlops: {total_flops / best_latency * 1e-9}")
        print(f"Best config: {best_config}")
243
244
245
246
247
        print(f"Ref latency: {ref_latency}")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
248
249
250
251
252
253
254
    parser.add_argument("--batch", type=int, default=1, help="batch size")
    parser.add_argument("--heads", type=int, default=64, help="heads")
    parser.add_argument("--seq_len", type=int, default=4096, help="sequence length")
    parser.add_argument("--dim", type=int, default=128, help="dim")
    parser.add_argument("--is_causal", action="store_true", help="causal")
    parser.add_argument("--tune", action="store_true", help="tune configs")
    parser.add_argument("--groups", type=int, default=16, help="groups")
255
256
    args = parser.parse_args()
    main(args.batch, args.heads, args.seq_len, args.dim, args.is_causal, args.groups, args.tune)