"desktop/vscode:/vscode.git/clone" did not exist on "9934ad77c0f59dcd9c22b9bfd0512beb780d8733"
example_gqa_fwd_bshd.py 11.3 KB
Newer Older
Lei Wang's avatar
Lei Wang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.

import torch
import torch.nn.functional as F
import tilelang
from tilelang import Profiler
from tilelang.autotuner import *
import tilelang.language as T
import itertools
import argparse
from functools import partial


15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
class FlashAttentionTuneSpace:

    def __init__(
        self,
        block_sizes=(64, 128, 256),
        thread_options=(128, 256, 512),
        num_stages_range=(2, 3),
        max_shared_mem=100 * 1024,
        warp_alignment=16,
        dim=128,
        dtype_bytes=2,
    ):
        self.block_sizes = block_sizes
        self.thread_options = thread_options
        self.num_stages_range = num_stages_range
        self.max_shared_mem = max_shared_mem
        self.warp_alignment = warp_alignment
        self.dim = dim
        self.dtype_bytes = dtype_bytes


def get_configs(user_config=None):
    config = user_config or FlashAttentionTuneSpace()
    valid_configs = []

    for block_M, block_N in itertools.product(config.block_sizes, repeat=2):
        for threads in config.thread_options:
            assert threads % 32 == 0
            warp_count = threads // 32
            warp_M = block_M // warp_count
            warp_N = block_N // warp_count

            if (warp_M % config.warp_alignment != 0 or warp_N % config.warp_alignment != 0):
                continue

            shared_mem = 2 * config.dtype_bytes * config.dim * (block_M + block_N)
            if shared_mem > config.max_shared_mem:
                continue

            for num_stages in config.num_stages_range:
                valid_configs.append({
                    "block_M": block_M,
                    "block_N": block_N,
                    "num_stages": num_stages,
                    "threads": threads,
                })
    return valid_configs
Lei Wang's avatar
Lei Wang committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239


def flashattn(batch, heads, seq_len, dim, is_causal, tune=False, groups=1):
    scale = (1.0 / dim)**0.5 * 1.44269504  # log2(e)
    head_kv = heads // groups
    q_shape = [batch, seq_len, heads, dim]
    kv_shape = [batch, seq_len, head_kv, dim]
    dtype = "float16"
    accum_dtype = "float"

    def kernel_func(block_M, block_N, num_stages, threads):

        @T.macro
        def MMA0(
            K: T.Buffer(kv_shape, dtype),
            Q_shared: T.Buffer([block_M, dim], dtype),
            K_shared: T.Buffer([block_N, dim], dtype),
            acc_s: T.Buffer([block_M, block_N], accum_dtype),
            k: T.int32,
            bx: T.int32,
            by: T.int32,
            bz: T.int32,
        ):
            T.copy(K[bz, k * block_N:(k + 1) * block_N, by // groups, :], K_shared)
            if is_causal:
                for i, j in T.Parallel(block_M, block_N):
                    acc_s[i, j] = T.if_then_else(bx * block_M + i >= k * block_N + j, 0,
                                                 -T.infinity(acc_s.dtype))
            else:
                T.clear(acc_s)
            T.gemm(Q_shared, K_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)

        @T.macro
        def MMA1(
                V: T.Buffer(kv_shape, dtype),
                V_shared: T.Buffer([block_M, dim], dtype),
                acc_s_cast: T.Buffer([block_M, block_N], dtype),
                acc_o: T.Buffer([block_M, dim], accum_dtype),
                k: T.int32,
                by: T.int32,
                bz: T.int32,
        ):
            T.copy(V[bz, k * block_N:(k + 1) * block_N, by // groups, :], V_shared)
            T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)

        @T.macro
        def Softmax(
                acc_s: T.Buffer([block_M, block_N], accum_dtype),
                acc_s_cast: T.Buffer([block_M, block_N], dtype),
                scores_max: T.Buffer([block_M], accum_dtype),
                scores_max_prev: T.Buffer([block_M], accum_dtype),
                scores_scale: T.Buffer([block_M], accum_dtype),
                scores_sum: T.Buffer([block_M], accum_dtype),
                logsum: T.Buffer([block_M], accum_dtype),
        ):
            T.copy(scores_max, scores_max_prev)
            T.fill(scores_max, -T.infinity(accum_dtype))
            T.reduce_max(acc_s, scores_max, dim=1, clear=False)
            # To do causal softmax, we need to set the scores_max to 0 if it is -inf
            # This process is called Check_inf in FlashAttention3 code, and it only need to be done
            # in the first ceil_div(kBlockM, kBlockN) steps.
            # for i in T.Parallel(block_M):
            #     scores_max[i] = T.if_then_else(scores_max[i] == -T.infinity(accum_dtype), 0, scores_max[i])
            for i in T.Parallel(block_M):
                scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
            for i, j in T.Parallel(block_M, block_N):
                # Instead of computing exp(x - max), we compute exp2(x * log_2(e) -
                # max * log_2(e)) This allows the compiler to use the ffma
                # instruction instead of fadd and fmul separately.
                acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
            T.reduce_sum(acc_s, scores_sum, dim=1)
            for i in T.Parallel(block_M):
                logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
            T.copy(acc_s, acc_s_cast)

        @T.macro
        def Rescale(
                acc_o: T.Buffer([block_M, dim], accum_dtype),
                scores_scale: T.Buffer([block_M], accum_dtype),
        ):
            for i, j in T.Parallel(block_M, dim):
                acc_o[i, j] *= scores_scale[i]

        @T.prim_func
        def main(
                Q: T.Buffer(q_shape, dtype),
                K: T.Buffer(kv_shape, dtype),
                V: T.Buffer(kv_shape, dtype),
                Output: T.Buffer(q_shape, dtype),
        ):
            with T.Kernel(
                    T.ceildiv(seq_len, block_M), heads, batch, threads=threads) as (bx, by, bz):
                Q_shared = T.alloc_shared([block_M, dim], dtype)
                K_shared = T.alloc_shared([block_N, dim], dtype)
                V_shared = T.alloc_shared([block_N, dim], dtype)
                O_shared = T.alloc_shared([block_M, dim], dtype)
                acc_s = T.alloc_fragment([block_M, block_N], accum_dtype)
                acc_s_cast = T.alloc_fragment([block_M, block_N], dtype)
                acc_o = T.alloc_fragment([block_M, dim], accum_dtype)
                scores_max = T.alloc_fragment([block_M], accum_dtype)
                scores_max_prev = T.alloc_fragment([block_M], accum_dtype)
                scores_scale = T.alloc_fragment([block_M], accum_dtype)
                scores_sum = T.alloc_fragment([block_M], accum_dtype)
                logsum = T.alloc_fragment([block_M], accum_dtype)

                T.copy(Q[bz, bx * block_M:(bx + 1) * block_M, by, :], Q_shared)
                T.fill(acc_o, 0)
                T.fill(logsum, 0)
                T.fill(scores_max, -T.infinity(accum_dtype))

                loop_range = (
                    T.min(T.ceildiv(seq_len, block_N), T.ceildiv(
                        (bx + 1) * block_M, block_N)) if is_causal else T.ceildiv(seq_len, block_N))

                for k in T.Pipelined(loop_range, num_stages=num_stages):
                    MMA0(K, Q_shared, K_shared, acc_s, k, bx, by, bz)
                    Softmax(acc_s, acc_s_cast, scores_max, scores_max_prev, scores_scale,
                            scores_sum, logsum)
                    Rescale(acc_o, scores_scale)
                    MMA1(V, V_shared, acc_s_cast, acc_o, k, by, bz)
                for i, j in T.Parallel(block_M, dim):
                    acc_o[i, j] /= logsum[i]
                T.copy(acc_o, O_shared)
                T.copy(O_shared, Output[bz, bx * block_M:(bx + 1) * block_M, by, :])

        return main

    if tune:

        @autotune(
            configs=get_configs(),
            keys=["block_M", "block_N", "num_stages", "threads"],
            warmup=10,
            rep=10)
        @jit(
            out_idx=[3],
            supply_type=tilelang.TensorSupplyType.Integer,
            ref_prog=None,
            profiler="auto")
        def kernel(block_M=None, block_N=None, num_stages=None, threads=None):
            return kernel_func(block_M, block_N, num_stages, threads)

        return kernel()
    else:

        def kernel(block_M, block_N, num_stages, threads):
            return kernel_func(block_M, block_N, num_stages, threads)

        return kernel


def ref_program(Q, K, V, is_causal, groups=1):
    # Q: [B, T, HQ, D]
    # K: [B, T, HK, D]
    # V: [B, T, HV, D]
    # HQ = HKV * groups
    assert Q.size(2) == K.size(
        2) * groups, f"Q.size(2): {Q.size(2)}, K.size(2): {K.size(2)}, groups: {groups}"
    assert Q.size(2) == V.size(
        2) * groups, f"Q.size(2): {Q.size(2)}, V.size(2): {V.size(2)}, groups: {groups}"

    dim = Q.size(-1)
    K = K.repeat_interleave(groups, dim=2)
    V = V.repeat_interleave(groups, dim=2)
    scores = torch.einsum('bqhd,bkhd->bhqk', Q, K)
    scores = scores / torch.sqrt(torch.tensor(dim, dtype=scores.dtype))
    if is_causal:
        seq_len = Q.size(1)
        mask = torch.tril(torch.ones(seq_len, seq_len, device=scores.device))
        mask = mask.unsqueeze(0).unsqueeze(0)
        scores = scores.masked_fill(mask == 0, float('-inf'))
    attention_weights = F.softmax(scores, dim=-1)
    output = torch.einsum('bhqk,bkhd->bqhd', attention_weights, V)
    return output


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
240
241
    parser.add_argument('--batch', type=int, default=1, help='batch size')
    parser.add_argument('--heads', type=int, default=64, help='heads')
242
    parser.add_argument('--seq_len', type=int, default=8192, help='sequence length')
Lei Wang's avatar
Lei Wang committed
243
244
245
    parser.add_argument('--dim', type=int, default=128, help='dim')
    parser.add_argument('--is_causal', action='store_true', help='causal')
    parser.add_argument('--tune', action='store_true', help='tune configs')
246
    parser.add_argument('--groups', type=int, default=16, help='groups')
Lei Wang's avatar
Lei Wang committed
247
248
249
250
251
252
253
254
255
256
    args = parser.parse_args()
    batch, heads, seq_len, dim, is_causal, groups = args.batch, args.heads, args.seq_len, args.dim, args.is_causal, args.groups
    flops_per_matmul = 2.0 * batch * heads * seq_len * seq_len * dim
    total_flops = 2 * flops_per_matmul
    if is_causal:
        total_flops *= 0.5

    if (not args.tune):
        program = flashattn(
            batch, heads, seq_len, dim, is_causal, tune=args.tune, groups=groups)(
257
                block_M=128, block_N=128, num_stages=2, threads=128)
Lei Wang's avatar
Lei Wang committed
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
        ref_program = partial(ref_program, is_causal=is_causal, groups=groups)
        mod, params = tilelang.lower(program)
        mod = Profiler(mod, params, [3], tilelang.TensorSupplyType.Normal)
        mod.assert_allclose(ref_program, rtol=0.01, atol=0.01)
        print("All checks pass.")
        latency = mod.do_bench(ref_program, warmup=500)
        print("Ref: {:.2f} ms".format(latency))
        print("Ref: {:.2f} TFlops".format(total_flops / latency * 1e-9))
        latency = mod.do_bench(mod.func, warmup=500)
        print("Tile-lang: {:.2f} ms".format(latency))
        print("Tile-lang: {:.2f} TFlops".format(total_flops / latency * 1e-9))
    else:
        best_latency, best_config, _ = flashattn(
            batch, heads, seq_len, dim, is_causal, tune=args.tune)
        print(f"Best latency: {best_latency}")
        print(f"Best TFlops: {total_flops / best_latency * 1e-9}")
        print(f"Best config: {best_config}")