example_dequant_gemv_fp16xint4.py 7.22 KB
Newer Older
1
2
3
4
5
6
import tilelang
from tilelang import language as T
from typing import Optional, Callable, Any
import torch
from tilelang import DataType
from tilelang.quantize import (
7
8
    _tir_packed_int_to_int_convert,
)
9
10


11
@tilelang.jit
12
13
14
15
16
17
18
19
def dequantize_gemv(
    M: int,
    N: int,
    K: int,
    in_dtype: str,
    out_dtype: str,
    accum_dtype: str,
    num_bits: int = 4,
20
    storage_dtype: T.dtype = T.int8,
21
22
23
24
25
26
27
28
29
30
31
    source_format: str = "uint",
    n_partition: int = 4,
    reduce_thread: int = 32,
    fast_decoding: bool = False,
    trans_A: bool = False,
    trans_B: bool = True,
    group_size: int = -1,
    with_scaling: bool = False,
) -> Callable[..., Any]:
    assert n_partition is not None, "n_partition must be provided"
    assert reduce_thread is not None, (
32
33
        "reduce_thread must be provided currently, as related bitblas.gpu.gemv.GEMVsch_outer_reduction_with_config is not implemented"
    )
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

    assert trans_A is False, "Dequantize only implement for trans_A=False currently"
    assert trans_B is True, "Dequantize only implement for trans_B=TRue currently"
    storage_type = "".join(c for c in storage_dtype if not c.isdigit())
    storage_nbit = int("".join(c for c in storage_dtype if c.isdigit()))
    num_elems_per_byte = storage_nbit // num_bits

    MAX_TRANSACTION_SIZE_IN_BITS = 128
    micro_size_k = MAX_TRANSACTION_SIZE_IN_BITS // DataType(in_dtype).bits
    micro_size_k_compressed = micro_size_k // num_elems_per_byte
    block_K = reduce_thread * micro_size_k

    if group_size == -1:
        group_size = K

    A_shape = (M, K)
    B_shape = (N, K // storage_nbit * num_bits)
    C_shape = (M, N)

    dp4a_size = 4
54
    use_dp4a = in_dtype == T.int8 and accum_dtype == T.int32
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

    import_source: Optional[str] = None
    func_name: str = ""
    if fast_decoding is True:
        # Lazy import to decrease the startup time
        # as intrin registry may take a while to load
        from tilelang.quantize import get_lop3_intrin_group

        lop3_intrin_info = get_lop3_intrin_group(
            out_dtype=in_dtype,
            source_format=source_format,
            source_bit=num_bits,
            storage_dtype=storage_dtype,
            with_scaling=with_scaling,
            with_zeros=False,
        )
        import_source = lop3_intrin_info["c_source"]
        func_name = lop3_intrin_info["func_name"]
        assert import_source is not None, "lop3_intrin_info is not found"
        assert func_name is not None, "lop3_intrin_info is not found"
        import_source = import_source

    @T.prim_func
    def main(
        A: T.Tensor[A_shape, in_dtype],
        B: T.Tensor[B_shape, storage_dtype],
        C: T.Tensor[C_shape, out_dtype],
    ):
        with T.Kernel(
84
85
86
            T.ceildiv(N, n_partition),
            M,
            threads=(reduce_thread, n_partition),
87
        ) as (
88
89
            bx,
            by,
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
        ):
            A_local = T.alloc_local((micro_size_k,), in_dtype)
            B_quant_local = T.alloc_local([micro_size_k_compressed], storage_dtype)
            B_dequantize_local = T.alloc_local([micro_size_k], in_dtype)
            accum_res = T.alloc_local((1,), accum_dtype)
            reduced_accum_res = T.alloc_local((1,), accum_dtype)

            kr = T.thread_binding(0, reduce_thread, thread="threadIdx.x")
            ni = T.thread_binding(0, n_partition, thread="threadIdx.y")

            T.import_source(import_source)

            T.clear(accum_res)
            for ko in T.serial(T.ceildiv(K, block_K)):
                for v in T.vectorized(micro_size_k):
                    A_local[v] = A[by, ko * block_K + kr * micro_size_k + v]

                for v in T.vectorized(micro_size_k_compressed):
                    B_quant_local[v] = B[
                        bx * n_partition + ni,
110
                        ko * (reduce_thread * micro_size_k_compressed) + kr * micro_size_k_compressed + v,
111
112
113
114
115
116
117
118
119
120
121
                    ]

                if fast_decoding:
                    T.call_extern(
                        func_name,
                        T.address_of(B_quant_local[0]),
                        T.address_of(B_dequantize_local[0]),
                        dtype=in_dtype,
                    )
                else:
                    for ki in T.serial(micro_size_k):
122
123
124
                        B_dequantize_local[ki] = _tir_packed_int_to_int_convert(storage_type, storage_nbit)(
                            num_bits, B_quant_local[ki // num_elems_per_byte], ki % num_elems_per_byte, in_dtype
                        )
125
126
127
128
129
130
131
132
133
134
135
136
137

                if use_dp4a:
                    for ki in T.serial(micro_size_k // dp4a_size):
                        T.dp4a(
                            A_local[ki * dp4a_size],
                            B_dequantize_local[ki * dp4a_size],
                            accum_res[0],
                        )
                else:
                    for ki in T.serial(micro_size_k):
                        accum_res[0] += A_local[ki] * B_dequantize_local[ki]

            with T.attr(
138
139
140
                T.comm_reducer(lambda x, y: x + y, [T.Cast(accum_dtype, 0)]),
                "reduce_scope",
                T.reinterpret(T.uint64(0), dtype="handle"),
141
142
143
144
145
146
147
148
149
            ):
                T.evaluate(
                    T.tvm_thread_allreduce(
                        T.uint32(1),
                        accum_res[0],
                        True,
                        reduced_accum_res[0],
                        kr,
                        dtype="handle",
150
151
                    )
                )
152
153
154
155
156
157
158
159
160
161
            if kr == 0:
                C[by, bx * n_partition + ni] = reduced_accum_res[0]

    return main


def main() -> None:
    M = 1
    N = 1024
    K = 1024
162
163
164
    in_dtype = T.float16
    out_dtype = T.float16
    accum_dtype = T.float16
165
    num_bits = 4
166
    storage_dtype = T.int8
167
168
169
170
171
172
173
174
175
    source_format = "uint"
    n_partition = 4
    reduce_thread = 32
    fast_decoding = True
    trans_A = False
    trans_B = True
    group_size = -1
    with_scaling = False

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
    kernel = dequantize_gemv(
        M,
        N,
        K,
        in_dtype,
        out_dtype,
        accum_dtype,
        num_bits,
        storage_dtype,
        source_format,
        n_partition,
        reduce_thread,
        fast_decoding,
        trans_A,
        trans_B,
        group_size,
        with_scaling,
    )
194
195
196
197

    storage_nbit = int("".join(c for c in storage_dtype if c.isdigit()))
    num_elems_per_byte = storage_nbit // num_bits
    A = torch.rand(M, K, dtype=getattr(torch, in_dtype)).cuda()
198
    qB = torch.randint(0, 127, (N, K // num_elems_per_byte), dtype=getattr(torch, storage_dtype)).cuda()
199
200
201
202
    C = torch.zeros(M, N, dtype=getattr(torch, accum_dtype)).cuda()

    if fast_decoding:
        from tilelang.quantize.utils import interleave_weight
203

204
205
206
207
        qB = interleave_weight(qB, num_bits, in_dtype)
    kernel(A, qB, C)

    # int4 reference
208
    B = torch.zeros(qB.shape[0], qB.shape[1] * 8 // 4, dtype=torch.half).to(torch.half).to(A.device)
209
210
211
212
213
214
215
216
217
218
219
220
221
    for j in range(B.shape[1]):
        B[:, j] = ((qB[:, j // 2] >> (4 * (j % 2))) & 0xF).to(torch.half)

    # Get Reference Result
    ref_c = torch.matmul(A, B.T).to(getattr(torch, accum_dtype))
    print("C: ", C)
    print("Ref C: ", ref_c)
    # doesn't apply scaling, the absolute error is large
    torch.testing.assert_close(C, ref_c, atol=1e3, rtol=1e-1)


if __name__ == "__main__":
    main()