example_dequant_gemv_fp16xint4.py 7.26 KB
Newer Older
1
2
3
4
5
6
7
8
9
import tilelang
from tilelang import language as T
from typing import Optional, Callable, Any
import torch
from tilelang import DataType
from tilelang.quantize import (
    _tir_packed_int_to_int_convert,)


10
@tilelang.jit
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
def dequantize_gemv(
    M: int,
    N: int,
    K: int,
    in_dtype: str,
    out_dtype: str,
    accum_dtype: str,
    num_bits: int = 4,
    storage_dtype: str = "int8",
    source_format: str = "uint",
    n_partition: int = 4,
    reduce_thread: int = 32,
    fast_decoding: bool = False,
    trans_A: bool = False,
    trans_B: bool = True,
    group_size: int = -1,
    with_scaling: bool = False,
) -> Callable[..., Any]:

    assert n_partition is not None, "n_partition must be provided"
    assert reduce_thread is not None, (
        "reduce_thread must be provided currently, as related bitblas.gpu.gemv.GEMV"
        "sch_outer_reduction_with_config is not implemented")

    assert trans_A is False, "Dequantize only implement for trans_A=False currently"
    assert trans_B is True, "Dequantize only implement for trans_B=TRue currently"
    storage_type = "".join(c for c in storage_dtype if not c.isdigit())
    storage_nbit = int("".join(c for c in storage_dtype if c.isdigit()))
    num_elems_per_byte = storage_nbit // num_bits

    MAX_TRANSACTION_SIZE_IN_BITS = 128
    micro_size_k = MAX_TRANSACTION_SIZE_IN_BITS // DataType(in_dtype).bits
    micro_size_k_compressed = micro_size_k // num_elems_per_byte
    block_K = reduce_thread * micro_size_k

    if group_size == -1:
        group_size = K

    A_shape = (M, K)
    B_shape = (N, K // storage_nbit * num_bits)
    C_shape = (M, N)

    dp4a_size = 4
    use_dp4a = in_dtype == "int8" and accum_dtype == "int32"

    import_source: Optional[str] = None
    func_name: str = ""
    if fast_decoding is True:
        # Lazy import to decrease the startup time
        # as intrin registry may take a while to load
        from tilelang.quantize import get_lop3_intrin_group

        lop3_intrin_info = get_lop3_intrin_group(
            out_dtype=in_dtype,
            source_format=source_format,
            source_bit=num_bits,
            storage_dtype=storage_dtype,
            with_scaling=with_scaling,
            with_zeros=False,
        )
        import_source = lop3_intrin_info["c_source"]
        func_name = lop3_intrin_info["func_name"]
        assert import_source is not None, "lop3_intrin_info is not found"
        assert func_name is not None, "lop3_intrin_info is not found"
        import_source = import_source

    @T.prim_func
    def main(
        A: T.Tensor[A_shape, in_dtype],
        B: T.Tensor[B_shape, storage_dtype],
        C: T.Tensor[C_shape, out_dtype],
    ):
        with T.Kernel(
                T.ceildiv(N, n_partition),
                M,
                threads=(reduce_thread, n_partition),
        ) as (
                bx,
                by,
        ):
            A_local = T.alloc_local((micro_size_k,), in_dtype)
            B_quant_local = T.alloc_local([micro_size_k_compressed], storage_dtype)
            B_dequantize_local = T.alloc_local([micro_size_k], in_dtype)
            accum_res = T.alloc_local((1,), accum_dtype)
            reduced_accum_res = T.alloc_local((1,), accum_dtype)

            kr = T.thread_binding(0, reduce_thread, thread="threadIdx.x")
            ni = T.thread_binding(0, n_partition, thread="threadIdx.y")

            T.import_source(import_source)

            T.clear(accum_res)
            for ko in T.serial(T.ceildiv(K, block_K)):
                for v in T.vectorized(micro_size_k):
                    A_local[v] = A[by, ko * block_K + kr * micro_size_k + v]

                for v in T.vectorized(micro_size_k_compressed):
                    B_quant_local[v] = B[
                        bx * n_partition + ni,
                        ko * (reduce_thread * micro_size_k_compressed) +
                        kr * micro_size_k_compressed + v,
                    ]

                if fast_decoding:
                    T.call_extern(
                        func_name,
                        T.address_of(B_quant_local[0]),
                        T.address_of(B_dequantize_local[0]),
                        dtype=in_dtype,
                    )
                else:
                    for ki in T.serial(micro_size_k):
                        B_dequantize_local[ki] = _tir_packed_int_to_int_convert(
                            storage_type,
                            storage_nbit)(num_bits, B_quant_local[ki // num_elems_per_byte],
                                          ki % num_elems_per_byte, in_dtype)

                if use_dp4a:
                    for ki in T.serial(micro_size_k // dp4a_size):
                        T.dp4a(
                            A_local[ki * dp4a_size],
                            B_dequantize_local[ki * dp4a_size],
                            accum_res[0],
                        )
                else:
                    for ki in T.serial(micro_size_k):
                        accum_res[0] += A_local[ki] * B_dequantize_local[ki]

            with T.attr(
                    T.comm_reducer(lambda x, y: x + y, [T.Cast(accum_dtype, 0)]),
                    "reduce_scope",
                    T.reinterpret(T.uint64(0), dtype="handle"),
            ):
                T.evaluate(
                    T.tvm_thread_allreduce(
                        T.uint32(1),
                        accum_res[0],
                        True,
                        reduced_accum_res[0],
                        kr,
                        dtype="handle",
                    ))
            if kr == 0:
                C[by, bx * n_partition + ni] = reduced_accum_res[0]

    return main


def main() -> None:
    M = 1
    N = 1024
    K = 1024
    in_dtype = "float16"
    out_dtype = "float16"
    accum_dtype = "float16"
    num_bits = 4
    storage_dtype = "int8"
    source_format = "uint"
    n_partition = 4
    reduce_thread = 32
    fast_decoding = True
    trans_A = False
    trans_B = True
    group_size = -1
    with_scaling = False

177
178
179
    kernel = dequantize_gemv(M, N, K, in_dtype, out_dtype, accum_dtype, num_bits, storage_dtype,
                             source_format, n_partition, reduce_thread, fast_decoding, trans_A,
                             trans_B, group_size, with_scaling)
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

    storage_nbit = int("".join(c for c in storage_dtype if c.isdigit()))
    num_elems_per_byte = storage_nbit // num_bits
    A = torch.rand(M, K, dtype=getattr(torch, in_dtype)).cuda()
    qB = torch.randint(
        0, 127, (N, K // num_elems_per_byte), dtype=getattr(torch, storage_dtype)).cuda()
    C = torch.zeros(M, N, dtype=getattr(torch, accum_dtype)).cuda()

    if fast_decoding:
        from tilelang.quantize.utils import interleave_weight
        qB = interleave_weight(qB, num_bits, in_dtype)
    kernel(A, qB, C)

    # int4 reference
    B = (
        torch.zeros(qB.shape[0], qB.shape[1] * 8 // 4,
                    dtype=torch.half).to(torch.half).to(A.device))
    for j in range(B.shape[1]):
        B[:, j] = ((qB[:, j // 2] >> (4 * (j % 2))) & 0xF).to(torch.half)

    # Get Reference Result
    ref_c = torch.matmul(A, B.T).to(getattr(torch, accum_dtype))
    print("C: ", C)
    print("Ref C: ", ref_c)
    # doesn't apply scaling, the absolute error is large
    torch.testing.assert_close(C, ref_c, atol=1e3, rtol=1e-1)


if __name__ == "__main__":
    main()