benchmark_gqa_sink_fwd.py 7.07 KB
Newer Older
1
2
3
import torch
import argparse
from tilelang.profiler import do_bench
4
from tilelang import language as T
5
6
7
8
import triton
import triton.language as tl
from triton.tools.tensor_descriptor import TensorDescriptor
from example_gqa_sink_fwd_bhsd_wgmma_pipelined import flashattn, ref_program, gen_inputs
9
from typing import Optional
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54


@triton.jit
def triton_kernel(
    Q,
    K,
    V,
    Sinks,
    sm_scale,
    Out,
    Z,
    H,
    N_Q_CTX,
    N_KV_CTX,
    HEAD_DIM: tl.constexpr,
    groups: tl.constexpr,
    BLOCK_M: tl.constexpr,
    BLOCK_N: tl.constexpr,
    BANDWIDTH: tl.constexpr,
    start_q: tl.constexpr,
):
    tl.static_assert(BLOCK_N <= HEAD_DIM)
    start_m = tl.program_id(0)
    off_hz = tl.program_id(1)
    off_z = off_hz // H
    off_h = off_hz % H

    # load attention sinks
    if Sinks is not None:  # noqa: SIM108
        sink = tl.load(Sinks + off_h).to(tl.float32)
    else:
        sink = 0

    # initialize offsets
    offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
    offs_n = tl.arange(0, BLOCK_N)
    # initialize pointer to m and l
    m_i = tl.zeros([BLOCK_M], dtype=tl.float32) + sink
    l_i = tl.zeros([BLOCK_M], dtype=tl.float32)
    acc = tl.zeros([BLOCK_M, HEAD_DIM], dtype=tl.float32)
    # load scales
    qk_scale = sm_scale
    q = Q.load([off_z, off_h, start_m * BLOCK_M, 0]).reshape([BLOCK_M, HEAD_DIM])

    if BANDWIDTH:
55
        lo, hi = tl.maximum(0, start_q + start_m * BLOCK_M - BANDWIDTH), start_q + (start_m + 1) * BLOCK_M
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
    else:
        lo, hi = 0, start_q + (start_m + 1) * BLOCK_M

    for start_n in range(lo, hi, BLOCK_N):
        start_n = tl.multiple_of(start_n, BLOCK_N)

        mask = (start_n + offs_n)[None, :] > (start_q + offs_m)[:, None]

        if BANDWIDTH:
            too_old = (start_n + offs_n[None, :]) < (start_q + offs_m[:, None] - BANDWIDTH + 1)
            mask = mask | too_old

        k = K.load([off_z, off_h // groups, start_n, 0]).reshape([BLOCK_N, HEAD_DIM]).T
        qk = tl.dot(q, k, allow_tf32=False)

        qk = qk * qk_scale + tl.where(mask, -1.0e6, 0.0)
        m_ij = tl.maximum(m_i, tl.max(qk, 1))
        qk -= m_ij[:, None]

        p = tl.math.exp(qk)
        alpha = tl.math.exp(m_i - m_ij)
        l_ij = tl.sum(p, 1)
        acc = acc * alpha[:, None]

        v = V.load([off_z, off_h // groups, start_n, 0]).reshape([BLOCK_N, HEAD_DIM])
        # v = v.to(tl.float32)
        p = p.to(v.dtype)  # We perform fp16 gemm to utilize tensor core
        acc = tl.dot(p, v, acc, allow_tf32=False)

        l_i = l_i * alpha + l_ij
        m_i = m_ij

    sink = tl.math.exp(sink - m_i)
    z = l_i + sink
    acc = acc / z[:, None]
    # m_i += tl.math.log(l_i)
    # m_ptrs = M + off_hz * N_Q_CTX + offs_m
    # tl.store(m_ptrs, m_i)
    acc = acc.to(Out.dtype)[None, None, :, :]
    Out.store([off_z, off_h, start_m * BLOCK_M, 0], acc)


98
def triton_program(Q, K, V, Sinks, window_size: Optional[int] = None) -> torch.Tensor:
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    bs, n_heads, seq_q, head_dim = Q.shape
    _, n_heads_kv, seq_kv, _ = K.shape
    BLOCK_M = 64
    BLOCK_N = 64
    groups = n_heads // n_heads_kv

    o = torch.empty_like(Q)
    grid = (triton.cdiv(seq_q, BLOCK_M), bs * n_heads, 1)
    triton_kernel[grid](
        TensorDescriptor.from_tensor(Q, [1, 1, BLOCK_M, head_dim]),
        TensorDescriptor.from_tensor(K, [1, 1, BLOCK_N, head_dim]),
        TensorDescriptor.from_tensor(V, [1, 1, BLOCK_N, head_dim]),
        Sinks,
        1.0 / head_dim**0.5,
        TensorDescriptor.from_tensor(o, [1, 1, BLOCK_M, head_dim]),
        bs,
        n_heads,
        N_Q_CTX=seq_q,
        N_KV_CTX=seq_kv,
        HEAD_DIM=head_dim,
        groups=groups,
        BANDWIDTH=window_size,
        BLOCK_M=BLOCK_M,
        BLOCK_N=BLOCK_N,
123
124
        start_q=seq_kv - seq_q,
    )
125
126
127
128
129
130
131
132
133
134
    return o


def main(
    batch: int = 1,
    heads: int = 32,
    seq_q: int = 256,
    seq_kv: int = 256,
    dim: int = 128,
    groups: int = 8,
135
    window_size: Optional[int] = None,
136
137
138
    dtype: str = "float16",
    tune: bool = False,
):
139
140
    dtype = T.dtype(dtype)
    torch_dtype = dtype.as_torch()
141
    if window_size is not None:
142
        print("Using sliding window attention.")
143
        assert window_size <= seq_q
144
        flops_per_matmul = 2.0 * batch * heads * min(window_size, seq_kv // 2) * seq_q * dim  # just a rough estimation
145
    else:
146
        print("Using full attention.")
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
        flops_per_matmul = 2.0 * batch * heads * seq_q * seq_kv * dim * 0.5
    total_flops = 2 * flops_per_matmul

    if tune:
        kernel = flashattn(batch, heads, seq_q, seq_kv, dim, groups, window_size, dtype=dtype)
        print(f"Best latency: {kernel.latency}")
        print(f"Best TFlops: {total_flops / kernel.latency * 1e-9}")
        print(f"Best config: {kernel.config}")
    else:
        block_M = 128
        block_N = 128
        num_stages = 2
        threads = 256
        print(f"{block_M=}, {block_N=}, {num_stages=}, {threads=}")

        kernel = flashattn(
            batch,
            heads,
            seq_q,
            seq_kv,
            dim,
            groups,
            window_size,
            block_M=block_M,
            block_N=block_N,
            num_stages=num_stages,
            threads=threads,
174
175
            dtype=dtype,
        )
176
177
178
179

        Q, K, V, sinks = gen_inputs(batch, heads, seq_q, seq_kv, dim, groups, dtype=torch_dtype)

        if torch.allclose(
180
181
            triton_program(Q, K, V, sinks, window_size), ref_program(Q, K, V, sinks, window_size, dtype=torch_dtype), rtol=1e-2, atol=1e-2
        ):
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
            print("Checks for triton passed.✅")
        else:
            print("Checks for triton failed.❌")

        # Benchmark triton
        latency_triton = do_bench(lambda: triton_program(Q, K, V, sinks, window_size), warmup=500)
        print("Triton: {:.2f} ms".format(latency_triton))
        print("Triton: {:.2f} TFlops".format(total_flops / latency_triton * 1e-9))

        # Benchmark tilelang
        latency_tilelang = do_bench(lambda: kernel(Q, K, V, sinks), warmup=500)
        print("Tilelang: {:.2f} ms".format(latency_tilelang))
        print("Tilelang: {:.2f} TFlops".format(total_flops / latency_tilelang * 1e-9))

        print("Speedup: {:.2f}x".format(latency_triton / latency_tilelang))


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
201
202
203
204
205
206
207
208
209
    parser.add_argument("--batch", type=int, default=1, help="batch size")
    parser.add_argument("--heads", type=int, default=64, help="heads")
    parser.add_argument("--seq_q", type=int, default=2048, help="sequence length of query")
    parser.add_argument("--seq_kv", type=int, default=2048, help="sequence length of key/value")
    parser.add_argument("--dim", type=int, default=128, help="dim")
    parser.add_argument("--groups", type=int, default=8, help="groups")
    parser.add_argument("--window_size", type=int, default=None, help="window size (default: None, which means full attention)")
    parser.add_argument("--dtype", type=str, default="float16", help="dtype, can be float16 or bfloat16")
    parser.add_argument("--tune", action="store_true", help="tune configs")
210
    args = parser.parse_args()
211
    main(args.batch, args.heads, args.seq_q, args.seq_kv, args.dim, args.groups, args.window_size, args.dtype, args.tune)