1. 17 Dec, 2025 1 commit
    • Lei Wang's avatar
      [Enhancement] Update examples and tests for improved type handling functionality (#1448) · c750fb8a
      Lei Wang authored
      * [Enhancement] Update examples and tests for improved type handling and functionality
      
      - Enhanced various example scripts to support new data types and improve compatibility with PyTorch.
      - Updated tests across multiple modules to ensure correct functionality with the latest changes in type handling.
      - Refactored code in examples to streamline operations and improve clarity, particularly in tensor operations and memory management.
      - Added comprehensive tests for new features and fixed existing issues related to type conversions and buffer handling.
      
      * [Refactor] Update accumulation data type to float32 across examples
      
      - Changed accumulation data type from "float" to T.float32 in multiple example scripts to ensure consistency and improve numerical stability.
      - This update affects various modules including flash attention, GEMM analysis, convolution, and deepseek MLA examples, enhancing type handling across the board.
      
      * [Refactor] Standardize data type usage across benchmark scripts
      
      - Updated data type definitions in benchmark scripts to use T.float16 and T.float32 consistently, enhancing clarity and type handling.
      - Adjusted dtype assignments in matmul functions and configuration setups to align with the new standard.
      - Improved overall code consistency and maintainability by ensuring uniform data type usage across various modules.
      
      * [Refactor] Standardize data type usage in templates and scripts
      
      - Updated data type definitions in various templates and scripts to use string representations (e.g., "float16", "int32") instead of T.float16 and T.int32 for improved consistency and clarity.
      - Enhanced overall code maintainability by ensuring uniform data type usage across multiple modules, including convolution, elementwise operations, and matrix multiplication templates.
      - This change aims to streamline type handling and improve compatibility with existing workflows.
      
      * [Refactor] Standardize data type usage in examples and benchmarks
      
      - Updated data type definitions in various example and benchmark scripts to use T.float16 and T.int32 consistently, enhancing clarity and maintainability.
      - Adjusted dtype assignments in kernel functions and configuration setups to align with the new standard.
      - Improved overall code consistency by ensuring uniform data type usage across multiple modules, including attention mechanisms, matrix multiplication, and GEMM examples.
      
      * [Refactor] Import dtypes from language.v2 module
      
      - Added import statement for dtypes from the language.v2 module to enhance type handling and maintain consistency across the codebase.
      - This change aims to streamline data type management and improve overall code clarity.
      
      * fix
      
      * [Refactor] Standardize data type usage across scripts
      
      - Updated data type definitions in various scripts to use string representations (e.g., "float16", "int8") instead of T.float16 and T.int8 for improved consistency and clarity.
      - Adjusted dtype assignments in functions and configuration setups to align with the new standard, enhancing overall code maintainability.
      - This change affects multiple modules, including benchmark and attention mechanisms, ensuring uniform data type usage throughout the codebase.
      
      * [Refactor] Update data type handling for consistency and clarity
      
      - Changed string representations of data types in the Hint class to use T.float32 and T.int32 for improved consistency.
      - Added new data types "int4" and "int16" to the dtypes module, enhancing type support across the codebase.
      - Updated function signatures and assertions in the lop3 and mxfp modules to utilize the new data types, ensuring uniformity in type handling.
      - This refactor aims to streamline data type management and improve overall code clarity and maintainability.
      
      * [Enhancement] Improve data type handling and error messaging
      
      - Introduced a mapping for canonical data types to their display strings, enhancing clarity in type representation.
      - Updated the dtype creation logic to utilize the new mapping, ensuring more intuitive handling of string inputs.
      - Refined error messages in the lop3 module to provide clearer feedback on invalid source formats, improving debugging and user experience.
      
      * [Fix] Correct boolean flag in GEMM SP test case
      
      - Updated the boolean flag in the test_gemm_sp_sm90 function to ensure proper functionality in the test case.
      - This change enhances the accuracy of the test and aligns it with expected behavior for the GEMM SP implementation.
      
      * [Refactor] Standardize data type usage across scripts
      
      - Updated data type definitions in various scripts to use T.float16 and T.bfloat16 consistently, enhancing clarity and maintainability.
      - Adjusted dtype assignments in function signatures and argument parsing to align with the new standard, ensuring uniform data type usage throughout the codebase.
      - This change affects multiple modules, including benchmarks and examples, improving overall code consistency and readability.
      
      * [Refactor] Standardize data type usage in various modules
      
      - Updated data type assignments in multiple scripts to utilize T.float32, T.int8, and T.int32 consistently, enhancing clarity and maintainability.
      - Adjusted function signatures and parameter types across benchmarks, examples, and tests to align with the new standard, ensuring uniform data type usage throughout the codebase.
      - This change improves overall code consistency and readability, impacting modules related to matrix multiplication, GEMM, and tensor operations.
      
      * [Refactor] Update argument parsing for data types in benchmarks
      
      - Changed argument parsing for data types in benchmark_matmul_intrinsic.py and benchmark_matmul_sp.py to use string representations ("float16", "int8", "float") instead of T.float16 and T.float.
      - This update enhances consistency in data type handling across benchmark scripts, improving clarity and maintainability.
      
      * [Refactor] Update data type handling in benchmark and example scripts
      
      - Changed data type arguments in benchmark and example scripts to use string representations ("float16") instead of T.float16 for improved consistency.
      - Updated function signatures and argument parsing to align with the new standard, enhancing clarity and maintainability across the codebase.
      - This change affects multiple modules related to attention mechanisms and tensor operations, ensuring uniform data type usage throughout the examples.
      
      * [Refactor] Fix data type conversion in multiple scripts
      
      - Corrected the usage of the data type conversion method from dtype..as_torch() to dtype.as_torch() across various benchmark and example scripts.
      - This change enhances consistency in data type handling and improves code readability, impacting modules related to attention mechanisms and tensor operations.
      
      * [Refactor] Update float8 data type usage across multiple scripts
      
      - Changed instances of T.float8_e4m3 to T.float8_e4m3fn in various benchmark, example, and test scripts to ensure consistency in data type handling.
      - This update enhances clarity and maintainability across the codebase, particularly in modules related to matrix multiplication and tensor operations.
      
      * [Refactor] Enhance float8 data type handling in CUDA code generation
      
      - Updated the handling of float8 data types in the CUDA code generation to include additional float8 variants, improving type conversion logic.
      - Adjusted conditions to ensure proper type checks for float8 conversions, enhancing clarity and maintainability in the codebase.
      - Modified layout inference to streamline float8 type checks, ensuring consistency across the implementation.
      - This change impacts modules related to matrix operations and CUDA code generation, improving overall type handling and conversion accuracy.
      
      * [Refactor] Streamline float8 data type handling in CUDA and related modules
      
      - Enhanced float8 data type handling in CUDA code generation by refining type conversion logic and ensuring consistent type checks.
      - Updated layout inference for float8 types to improve clarity and maintainability across the implementation.
      - This change impacts modules related to matrix operations and CUDA code generation, improving overall type handling and conversion accuracy.
      
      * [Refactor] Remove unnecessary cache disabling in float8 example script
      
      - Eliminated the call to tilelang.disable_cache() in example_group_per_split_token_cast_to_fp8.py to streamline the code.
      - This change enhances clarity and maintainability of the example script without affecting its functionality.
      
      * [Refactor] Update data type usage in debug print tests
      
      - Changed the argument for dtype in the test_debug_print_buffer function from a string representation to the corresponding T.bool type.
      - This update enhances consistency in data type handling within the test suite, improving clarity and maintainability.
      
      * lint fix
      
      * Update function parameter types from `str` to `T.dtype` for improved type safety in attention sink and related examples
      
      * Refactor `gemv_alloc_reducer` function signature for improved readability by formatting parameters across multiple lines.
      c750fb8a
  2. 12 Dec, 2025 1 commit
  3. 04 Nov, 2025 1 commit
    • Lei Wang's avatar
      [Refactor] Improve Python3.9 compatibility for ParamSpec and Self (#1190) · 7d961892
      Lei Wang authored
      * [Feature] Enhance fill operation to support various buffer types
      
      - Added support for `BufferLoad` in the `fill` function to handle different buffer types.
      - Updated `Fill` class to process region descriptors and buffer regions, improving flexibility in buffer handling.
      - Introduced checks for static bounds in region definitions to ensure safety during operations.
      - Refactored loop induction variable handling in `FillNode` to accommodate sliced regions.
      
      * lint fix
      
      * [Refactor] Improve Python compatibility for ParamSpec and Self
      
      - Added compatibility handling for ParamSpec and Self to support Python versions below 3.10 and 3.11 respectively.
      - Updated type annotations across multiple files to ensure consistent usage of typing features.
      
      * [Update] Require Python 3.9 and enhance type annotations
      
      - Updated the minimum required Python version from 3.8 to 3.9 in `pyproject.toml`.
      - Removed references to Python 3.8 in classifiers.
      - Changed type annotations from `int | None` to `Optional[int]` in multiple example files for better clarity and compatibility.
      - Improved import statements to use `collections.abc` for `Iterable` and `contextlib` for `AbstractContextManager` in relevant files.
      
      * [Refactor] Update import statements to enhance type annotations
      
      - Replaced imports from `typing` with `collections.abc` for `Iterable` and `Mapping` in relevant files to improve compatibility and clarity.
      - Updated the caching decorator from `functools.lru_cache` to `functools.cache` for better performance in the C++ compiler retrieval function.
      - Adjusted import statements in the language proxy file to maintain consistency in type annotations.
      
      * disable rocm rs nt test.
      
      * lint fix
      7d961892
  4. 15 Oct, 2025 1 commit
    • Tong WU's avatar
      [BugFix] Phaseout dependency of Triton in sink examples to make CI happy (#1045) · 8f001e02
      Tong WU authored
      
      
      * [BugFix] Phaseout dependency of Triton in sink examples to make CI happy
      
      - Added `benchmark_gqa_sink_fwd.py` and `benchmark_mha_sink_fwd.py` to evaluate performance of GQA and MHA attention mechanisms using Triton.
      - Refactored existing attention sink implementations to remove Triton kernel definitions from the reference programs, streamlining the code.
      - Updated input generation and benchmarking logic to enhance configurability and performance measurement.
      - Improved overall structure and organization of the examples for better clarity and usability.
      
      * [Lint]: [pre-commit.ci] auto fixes [...]
      
      ---------
      Co-authored-by: default avatarpre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
      8f001e02