layout.cc 26.6 KB
Newer Older
1
2
3
4
5
6
/*!
 * \file layout/layout.cc
 *
 */

#include "layout.h"
7
#include <tvm/ffi/reflection/registry.h>
8
#include <tvm/runtime/logging.h>
9
10
11
12
13
14
15
16
17
18
19
20
21

#include <tvm/arith/pattern.h>
#include <tvm/tir/op.h>
#include <tvm/tir/stmt_functor.h>

#include "arith/pattern_match.h"
#include "utils.h"

namespace tvm {
namespace tl {

using namespace tir;

22
static Var getPlaceholder(const std::string &s) {
23
24
25
26
27
28
29
30
  static std::unordered_map<std::string, Var> map;
  if (map.find(s) == map.end()) {
    map[s] = Var(s);
  }
  return map[s];
}

Var ReplicationPlaceholder() { return getPlaceholder("_rep"); }
31
32
33
Var InputPlaceholder(size_t idx) {
  return getPlaceholder(std::string{'_', char('i' + idx)});
}
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Map<Var, Range> LayoutNode::getVarMap() const {
  Map<Var, Range> map;
  for (size_t i = 0; i < InputDim(); i++) {
    map.Set(InputPlaceholder(i), {0, input_size_[i]});
  }
  return map;
}

Map<Var, Range> FragmentNode::getVarMap() const {
  auto map = LayoutNode::getVarMap();
  map.Set(ReplicationPlaceholder(), {0, ReplicateExtent()});
  return map;
}

49
50
LayoutNode::LayoutNode(Array<PrimExpr> input_size,
                       Array<PrimExpr> forward_index) {
51
52
53
  input_size_ = input_size;
  arith::Analyzer analyzer;
  UpdateAnalyzer(&analyzer);
54
55
  forward_index_ = forward_index.Map(
      [&](const PrimExpr &e) { return analyzer.Simplify(e); });
56
57
58
59
60
61
62
63
64
65
}

Layout::Layout(Array<IterVar> forward_var, Array<PrimExpr> forward_index) {
  Map<Var, PrimExpr> vmap;
  Array<PrimExpr> input_size;
  for (size_t i = 0; i < forward_var.size(); i++) {
    vmap.Set(forward_var[i]->var, InputPlaceholder(i));
    CHECK(is_zero(forward_var[i]->dom->min));
    input_size.push_back(forward_var[i]->dom->extent);
  }
66
67
  forward_index =
      forward_index.Map([&](const PrimExpr &e) { return Substitute(e, vmap); });
68
  auto n = tvm::ffi::make_object<LayoutNode>(input_size, forward_index);
69
70
71
72
  data_ = std::move(n);
}

Layout::Layout(Array<PrimExpr> input_size, Array<PrimExpr> forward_index) {
73
  auto n = tvm::ffi::make_object<LayoutNode>(input_size, forward_index);
74
75
76
  data_ = std::move(n);
}

77
78
79
80
81
void LayoutNode::RegisterReflection() {
  namespace refl = tvm::ffi::reflection;
  refl::ObjectDef<LayoutNode>()
      .def_ro("input_size", &LayoutNode::input_size_)
      .def_ro("forward_index", &LayoutNode::forward_index_);
82
83
}

84
85
void LayoutNode::UpdateAnalyzer(arith::Analyzer *analyzer) const {
  for (const auto &[var, dom] : getVarMap()) {
86
87
88
89
    analyzer->Bind(var, dom);
  }
}

90
91
92
93
94
95
96
97
Array<PrimExpr> LayoutNode::GetForwardVars() const {
  Array<PrimExpr> vars;
  for (size_t i = 0; i < InputDim(); i++) {
    vars.push_back(InputPlaceholder(i));
  }
  return vars;
}

98
99
100
101
102
103
104
Array<PrimExpr> LayoutNode::OutputShape() const {
  Array<PrimExpr> ret(OutputDim(), 1);
  arith::Analyzer analyzer;
  UpdateAnalyzer(&analyzer);
  for (size_t i = 0; i < ret.size(); i++) {
    auto ist = analyzer.int_set(forward_index_[i] + 1);
    if (arith::is_neg_inf(ist.min()) && arith::is_pos_inf(ist.max())) {
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
      // Analyzer couldn't form an IntervalSet (e.g. bitwise ops).
      // Fall back to ConstIntBound to derive a safe extent.
      auto cib = analyzer.const_int_bound(forward_index_[i]);
      if (cib->min_value != arith::ConstIntBound::kNegInf &&
          cib->max_value != arith::ConstIntBound::kPosInf &&
          cib->min_value >= 0) {
        // extent = max - min + 1, using 64-bit integer literal
        ret.Set(i, Integer(cib->max_value - cib->min_value + 1));
      } else {
        // Last-resort conservative fallback to avoid OOB/crash
        // Prefer to keep dimension from known input_size_ if available.
        if (i < input_size_.size()) {
          ret.Set(i, input_size_[i]);
        } else {
          ret.Set(i, Integer(1));
        }
      }
122
123
124
125
126
127
128
    } else {
      ret.Set(i, ist.max());
    }
  }
  return ret;
}

129
130
131
Array<PrimExpr> LayoutNode::Forward(const Array<PrimExpr> &vars) const {
  if (vars.empty())
    return forward_index_;
132
133
134
135
136
137
138
139
  ICHECK_GE(vars.size(), InputDim());

  // Take the last InputDim() elements for transformation
  Array<PrimExpr> transform_vars;
  for (size_t i = vars.size() - InputDim(); i < vars.size(); i++) {
    transform_vars.push_back(vars[i]);
  }

140
141
  Map<Var, PrimExpr> vmap;
  for (size_t i = 0; i < InputDim(); i++) {
142
    vmap.Set(InputPlaceholder(i), transform_vars[i]);
143
  }
144
145

  Array<PrimExpr> transformed = forward_index_.Map(
146
      [&](const PrimExpr &e) { return Substitute(e, vmap); });
147
148
149
150
151
152
153
154
155
156
  // Concatenate with the remaining elements from vars
  Array<PrimExpr> result;
  for (size_t i = 0; i < vars.size() - InputDim(); i++) {
    result.push_back(vars[i]);
  }
  for (const auto &expr : transformed) {
    result.push_back(expr);
  }

  return result;
157
158
}

159
160
Fragment FragmentNode::Repeat(const Array<PrimExpr> &repeats,
                              bool repeat_on_thread,
161
162
163
164
165
166
                              bool lower_dim_first) const {
  ICHECK_EQ(repeats.size(), InputDim());
  Array<PrimExpr> new_input_size;
  Map<Var, PrimExpr> vmap;
  for (size_t i = 0; i < InputDim(); i++) {
    new_input_size.push_back(input_size_[i] * repeats[i]);
167
168
    vmap.Set(InputPlaceholder(i),
             FloorMod(InputPlaceholder(i), InputShape()[i]));
169
170
171
172
173
  }

  PrimExpr repeats_index = 0, repeat_stride = 1;
  if (lower_dim_first) {
    for (int i = InputDim() - 1; i >= 0; i--) {
174
175
      repeats_index +=
          repeat_stride * FloorDiv(InputPlaceholder(i), InputShape()[i]);
176
177
178
179
      repeat_stride *= repeats[i];
    }
  } else {
    for (size_t i = 0; i < InputDim(); i++) {
180
181
      repeats_index +=
          repeat_stride * FloorDiv(InputPlaceholder(i), InputShape()[i]);
182
183
184
185
186
187
      repeat_stride *= repeats[i];
    }
  }

  if (repeat_on_thread) {
    PrimExpr thread_size = ThreadExtent();
188
189
190
191
192
    auto new_forward_index = forward_index_.Map(
        [&](const PrimExpr &e) { return Substitute(e, vmap); });
    auto new_forward_thread =
        Substitute(forward_thread_, vmap) + thread_size * repeats_index;
    return Fragment(new_input_size, new_forward_index, new_forward_thread,
193
                    replicate_size_, std::nullopt);
194
195
196
197
198
199
  } else {
    ICHECK(OutputDim() == 1);
    PrimExpr frag_len = OutputShape()[0];
    Array<PrimExpr> new_forward_index = {Substitute(forward_index_[0], vmap) +
                                         frag_len * repeats_index};
    PrimExpr new_forward_thread = Substitute(forward_thread_, vmap);
200
    return Fragment(new_input_size, new_forward_index, new_forward_thread,
201
                    replicate_size_, std::nullopt);
202
203
204
205
206
207
  }
}

Fragment FragmentNode::Replicate(int repeats) const {
  ICHECK(repeats >= 1);
  Map<Var, PrimExpr> vmap;
208
209
  vmap.Set(ReplicationPlaceholder(),
           FloorMod(ReplicationPlaceholder(), ReplicateExtent()));
210
211
212
  PrimExpr new_forward_thread =
      Substitute(forward_thread_, vmap) +
      ThreadExtent() * FloorDiv(ReplicationPlaceholder(), ReplicateExtent());
213
  return Fragment(input_size_, forward_index_, new_forward_thread,
214
                  ReplicateExtent() * repeats, std::nullopt);
215
216
217
218
219
220
221
222
223
224
225
226
}

Fragment FragmentNode::DeReplicate() const {
  ICHECK(OutputDim() == 1);
  arith::Analyzer analyzer;
  UpdateAnalyzer(&analyzer);
  int factor = 1;
  auto rep_size = as_const_int(ReplicateExtent());
  auto idx_size = as_const_int(OutputShape()[0]);
  if (rep_size && idx_size) {
    factor = arith::ZeroAwareGCD(*rep_size, *idx_size);
  }
227
  if (factor == 1)
228
    return tvm::ffi::GetRef<Fragment>(this);
229
230

  Map<Var, PrimExpr> vmap;
231
232
  vmap.Set(ReplicationPlaceholder(), ReplicationPlaceholder() * factor +
                                         FloorMod(forward_index_[0], factor));
233
234
  PrimExpr new_forward_thread = Substitute(forward_thread_, vmap);
  Array<PrimExpr> new_forward_index = {FloorDiv(forward_index_[0], factor)};
235
  return Fragment(input_size_, new_forward_index, new_forward_thread,
236
                  int(*rep_size) / factor, std::nullopt);
237
238
}

239
Fragment FragmentNode::BindThreadRange(Range thread_range) const {
240
  auto n = tvm::ffi::make_object<FragmentNode>(*this);
241
242
  n->thread_range_ = thread_range;
  return Fragment(n);
243
244
}

245
std::pair<Layout, arith::IterMapLevel> LayoutNode::InverseWithLevel() const {
246
  arith::Analyzer analyzer;
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
  auto collect_symbolic = [&](const Array<PrimExpr> &shape) {
    Array<PrimExpr> symbolic_dims;
    for (const auto &dim : shape) {
      if (!as_const_int(dim)) {
        symbolic_dims.push_back(dim);
      }
    }
    return symbolic_dims;
  };
  Array<PrimExpr> symbolic_dims = collect_symbolic(input_size_);
  Array<PrimExpr> output_shape = OutputShape();
  symbolic_dims.insert(symbolic_dims.end(), output_shape.begin(),
                       output_shape.end());
  symbolic_dims = collect_symbolic(symbolic_dims);
  bool is_static_shape = symbolic_dims.empty();
  auto level = is_static_shape ? arith::IterMapLevel::Bijective
                               : arith::IterMapLevel::NoCheck;
  if (!is_static_shape) {
    // Runtime guards keep dynamic tails safe, so we allow NoCheck here and
    // warn.
267
268
269
    DLOG(WARNING) << "Layout::Inverse on symbolic layout, falling back to "
                     "NoCheck; symbolic dims: "
                  << symbolic_dims;
270
  }
271
  arith::IterMapResult res =
272
      arith::DetectIterMap(forward_index_, getVarMap(), 1, level, &analyzer);
273
274
275
276
277
  if (!res->errors.empty()) {
    std::ostringstream msg;
    msg << "Layout " << DebugOutput() << " has errors: " << res->errors;
    throw NormalizeIterException(msg.str());
  }
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295

  auto outputs_shape = OutputShape();
  Array<PrimExpr> outputs;
  for (size_t i = 0; i < OutputDim(); i++) {
    outputs.push_back(InputPlaceholder(i));
  }

  auto inv = arith::InverseAffineIterMap(res->indices, outputs);

  Array<PrimExpr> backward_index;
  for (size_t i = 0; i < InputDim(); i++) {
    if (inv.find(InputPlaceholder(i)) != inv.end()) {
      backward_index.push_back(inv[InputPlaceholder(i)]);
    } else {
      backward_index.push_back(0);
    }
  }

296
  return {Layout(outputs_shape, backward_index), level};
297
298
}

299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
Layout LayoutNode::Reshape(const Array<PrimExpr> &shape,
                           arith::Analyzer *analyzer) const {
  // Fast path: if shape is the same, return the original layout
  if (StructuralEqual()(InputShape(), shape)) {
    return ffi::GetRef<Layout>(this);
  }

  // Step 1. Prove the product of InputShape is equal to the product of shape
  PrimExpr input_shape_product = Integer(1);
  for (const auto &dim : InputShape()) {
    input_shape_product *= dim;
  }
  PrimExpr shape_product = Integer(1);
  for (const auto &dim : shape) {
    shape_product *= dim;
  }

  if (analyzer) {
    ICHECK(analyzer->CanProveEqual(input_shape_product, shape_product))
        << "InputShape() = " << InputShape() << " shape = " << shape;
  } else {
    arith::Analyzer local_analyzer;
    ICHECK(local_analyzer.CanProveEqual(input_shape_product, shape_product))
        << "InputShape() = " << InputShape() << " shape = " << shape;
  }

  // Step 2. Create new forward indices by reshaping
  // For each dimension in the new shape, we create a placeholder variable
  Array<Var> new_vars;
  for (size_t i = 0; i < shape.size(); ++i) {
    new_vars.push_back(InputPlaceholder(i));
  }
  // Step 3. Compute the flat index from new shape indices
  // flat_index = k0 * (s1 * s2 * ...) + k1 * (s2 * s3 * ...) + ... + kn
  PrimExpr flat_index = Integer(0);
  for (size_t i = 0; i < shape.size(); ++i) {
    PrimExpr stride = Integer(1);
    for (size_t j = i + 1; j < shape.size(); ++j) {
      stride = stride * shape[j];
    }
    flat_index = flat_index + new_vars[i] * stride;
  }
  // Step 4. Convert flat index back to original shape indices
  // For original shape [s0, s1, ..., sm]:
  // i0 = flat_index // (s1 * s2 * ... * sm)
  // i1 = (flat_index % (s1 * s2 * ... * sm)) // (s2 * s3 * ... * sm)
  // ...
  Array<PrimExpr> original_indices;
  PrimExpr remaining = flat_index;
  for (size_t i = 0; i < InputShape().size(); ++i) {
    PrimExpr stride = Integer(1);
    for (size_t j = i + 1; j < InputShape().size(); ++j) {
      stride = stride * InputShape()[j];
    }
    original_indices.push_back(floordiv(remaining, stride));
    remaining = floormod(remaining, stride);
  }
  // Step 5. Substitute original indices into forward_index_
  Array<PrimExpr> new_forward_index;
  for (const auto &fwd_expr : forward_index_) {
    PrimExpr substituted = fwd_expr;
    // Replace each InputPlaceholder(i) with original_indices[i]
    for (size_t i = 0; i < InputShape().size(); ++i) {
      substituted =
          Substitute(substituted, {{InputPlaceholder(i), original_indices[i]}});
    }
    new_forward_index.push_back(substituted);
  }
  return Layout(shape, new_forward_index);
}

Layout FragmentNode::Reshape(const Array<PrimExpr> &shape,
                             arith::Analyzer *analyzer) const {
  // Fast path: identical input shape, return self
  if (StructuralEqual()(InputShape(), shape)) {
    return ffi::GetRef<Fragment>(this);
  }

  // 1) Prove total number of elements remains the same
  PrimExpr input_prod = Integer(1);
  for (const auto &d : InputShape())
    input_prod *= d;
  PrimExpr shape_prod = Integer(1);
  for (const auto &d : shape)
    shape_prod *= d;

  if (analyzer) {
    ICHECK(analyzer->CanProveEqual(input_prod, shape_prod))
        << "InputShape() = " << InputShape() << " shape = " << shape
        << " input fragment layout is = " << DebugOutput();
  } else {
    arith::Analyzer local_analyzer;
    ICHECK(local_analyzer.CanProveEqual(input_prod, shape_prod))
        << "InputShape() = " << InputShape() << " shape = " << shape;
  }

  // 2) Build flat index from new-shape indices
  Array<Var> new_vars;
  new_vars.reserve(shape.size());
  for (size_t i = 0; i < shape.size(); ++i)
    new_vars.push_back(InputPlaceholder(i));

  PrimExpr flat = Integer(0);
  for (size_t i = 0; i < shape.size(); ++i) {
    PrimExpr stride = Integer(1);
    for (size_t j = i + 1; j < shape.size(); ++j)
      stride = stride * shape[j];
    flat = flat + new_vars[i] * stride;
  }

  // 3) Recover original indices from flat index
  Array<PrimExpr> orig_indices;
  PrimExpr remain = flat;
  for (size_t i = 0; i < InputShape().size(); ++i) {
    PrimExpr stride = Integer(1);
    for (size_t j = i + 1; j < InputShape().size(); ++j)
      stride = stride * InputShape()[j];
    orig_indices.push_back(floordiv(remain, stride));
    remain = floormod(remain, stride);
  }

  // 4) Substitute old placeholders with expressions of new indices
  Array<PrimExpr> new_forward_index;
  for (const auto &e : forward_index_) {
    PrimExpr cur = e;
    for (size_t i = 0; i < InputShape().size(); ++i) {
      cur = Substitute(cur, {{InputPlaceholder(i), orig_indices[i]}});
    }
    new_forward_index.push_back(cur);
  }

  PrimExpr new_forward_thread = forward_thread_;
  for (size_t i = 0; i < InputShape().size(); ++i) {
    new_forward_thread = Substitute(new_forward_thread,
                                    {{InputPlaceholder(i), orig_indices[i]}});
  }

  Fragment reshaped(shape, new_forward_index, new_forward_thread,
                    ReplicateExtent(), std::nullopt);
  if (thread_range_.defined()) {
    reshaped = reshaped->BindThreadRange(thread_range_);
  }
  return reshaped;
}

444
445
446
447
Layout LayoutNode::Inverse() const {
  auto inverse_result = InverseWithLevel();
  return std::move(inverse_result.first);
}
448

449
450
451
452
453
PrimExpr infer_fragment_index(const Map<Var, Range> &input_iters,
                              const PrimExpr &forward_thread,
                              arith::Analyzer *analyzer) {
  Array<arith::IterSplitExpr> splits = DivideUnusedIterators(
      {forward_thread}, ToIterVars(input_iters), analyzer);
454
455

  Array<arith::IterSplitExpr> split_without_rep;
456
  for (const auto &split : splits) {
457
    CHECK(split->source->source.as<Var>());
458
459
460
    if (split->source->source.as<Var>().value().same_as(
            ReplicationPlaceholder()))
      continue;
461
462
463
464
465
    split_without_rep.push_back(split);
  }
  return MakeFlattenedExpression(split_without_rep);
}

466
467
FragmentNode::FragmentNode(Array<PrimExpr> input_size,
                           Array<PrimExpr> forward_index,
468
469
470
471
472
473
474
                           PrimExpr forward_thread, PrimExpr replicate_size) {
  input_size_ = input_size;
  replicate_size_ = replicate_size;
  arith::Analyzer analyzer;
  UpdateAnalyzer(&analyzer);
  forward_thread_ = analyzer.Simplify(forward_thread);
  if (forward_index.empty()) {
475
476
    forward_index = {
        infer_fragment_index(getVarMap(), forward_thread_, &analyzer)};
477
  }
478
479
  forward_index_ = forward_index.Map(
      [&](const PrimExpr &e) { return analyzer.Simplify(e); });
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
}

Fragment::Fragment(Array<IterVar> forward_var, Array<PrimExpr> forward_index,
                   PrimExpr forward_thread, IterVar thread_replicate) {
  Map<Var, PrimExpr> vmap;
  Array<PrimExpr> input_size;
  PrimExpr replicate_size = 1;
  for (size_t i = 0; i < forward_var.size(); i++) {
    vmap.Set(forward_var[i]->var, InputPlaceholder(i));
    CHECK(is_zero(forward_var[i]->dom->min));
    input_size.push_back(forward_var[i]->dom->extent);
  }
  if (thread_replicate.defined()) {
    ICHECK(is_zero(thread_replicate->dom->min));
    replicate_size = thread_replicate->dom->extent;
    vmap.Set(thread_replicate->var, ReplicationPlaceholder());
  }
497
498
  forward_index =
      forward_index.Map([&](const PrimExpr &e) { return Substitute(e, vmap); });
499
500
  forward_thread = Substitute(forward_thread, vmap);

501
502
  auto n = tvm::ffi::make_object<FragmentNode>(input_size, forward_index,
                                               forward_thread, replicate_size);
503
504
505
506
  data_ = std::move(n);
}

Fragment::Fragment(Array<PrimExpr> input_size, Array<PrimExpr> forward_index,
507
508
                   PrimExpr forward_thread, PrimExpr replicate_size,
                   Optional<Var> replicate_var) {
509
  if (replicate_var.defined()) {
510
511
    forward_thread = Substitute(
        forward_thread, {{replicate_var.value(), ReplicationPlaceholder()}});
512
  }
513
514
  auto n = tvm::ffi::make_object<FragmentNode>(input_size, forward_index,
                                               forward_thread, replicate_size);
515
516
517
  data_ = std::move(n);
}

518
519
520
521
522
523
524
// which means the forward_thread is rep_var -> lambda i, rep: rep
bool FragmentNode::IsCompletedReplicated() const {
  arith::Analyzer analyzer;
  return ExprDeepEqual()(analyzer.Simplify(forward_thread_),
                         ReplicationPlaceholder());
}

525
526
527
528
529
530
531
532
PrimExpr FragmentNode::ThreadExtent() const {
  Array<PrimExpr> ret(OutputDim(), 1);
  arith::Analyzer analyzer;
  UpdateAnalyzer(&analyzer);
  auto ist = analyzer.int_set(forward_thread_ + 1);
  return ist.max();
}

533
534
535
536
537
538
539
540
541
542
543
Array<PrimExpr> FragmentNode::GetForwardVars() const {
  Array<PrimExpr> vars;
  if (*as_const_int(ReplicateExtent()) > 1) {
    vars.push_back(ReplicationPlaceholder());
  }
  for (size_t i = 0; i < InputDim(); i++) {
    vars.push_back(InputPlaceholder(i));
  }
  return vars;
}

544
545
PrimExpr FragmentNode::ForwardThread(const Array<PrimExpr> &vars,
                                     const Optional<PrimExpr> &rep_var) const {
546
547
548
549
550
  Map<Var, PrimExpr> vmap;
  ICHECK_EQ(vars.size(), InputDim());
  for (size_t i = 0; i < InputDim(); i++) {
    vmap.Set(InputPlaceholder(i), vars[i]);
  }
551
552
  if (rep_var.defined())
    vmap.Set(ReplicationPlaceholder(), rep_var.value());
553
554
555
556
557

  return Substitute(forward_thread_, vmap);
}

Layout FragmentNode::Inverse() const {
558
559
560
561
562
  auto result = InverseWithLevel();
  return std::move(result.first);
}

std::pair<Layout, arith::IterMapLevel> FragmentNode::InverseWithLevel() const {
563
564
565
566
  auto input_size_copy = input_size_;
  input_size_copy.push_back(ReplicateExtent());
  auto forward_index_copy = forward_index_;
  forward_index_copy.push_back(
567
568
      Substitute(forward_thread_,
                 {{ReplicationPlaceholder(), InputPlaceholder(InputDim())}}));
569
  auto fwd = Layout(input_size_copy, forward_index_copy);
570
  return fwd->InverseWithLevel();
571
572
573
574
575
576
577
578
}

Fragment FragmentNode::CondenseReplicateVar() const {
  arith::Analyzer analyzer;
  auto input_iters = getVarMap();
  input_iters.Set(ReplicationPlaceholder(), {0, ReplicateExtent()});
  PrimExpr new_forward_thread;
  IterVar new_thread_replicate;
579
580
581
  std::tie(new_forward_thread, new_thread_replicate) =
      CompressIterator(forward_thread_, ToIterVars(input_iters),
                       ReplicationPlaceholder(), &analyzer);
582
583
584
585
  return Fragment(input_size_, forward_index_, new_forward_thread,
                  new_thread_replicate->dom->extent, new_thread_replicate->var);
}

586
587
std::string LayoutNode::DebugOutput() const {
  std::stringstream ss;
588
589
590
  ss << "Layout(" << InputShape() << " -> " << OutputShape()
     << ", transform: " << GetForwardVars() << " -> " << GetForwardIndex()
     << ")";
591
  return ss.str();
592
593
}

594
595
std::string FragmentNode::DebugOutput() const {
  std::stringstream ss;
596
597
598
599
600
601
602
603
  ss << "Fragment(" << InputShape() << " -> " << OutputShape()
     << ", replicate: " << ReplicateExtent() << ", thread: " << ThreadExtent()
     << ", forward_thread: " << forward_thread_
     << ", forward_index: " << GetForwardIndex();
  if (thread_range_.defined()) {
    ss << ", thread_range: " << thread_range_;
  }
  ss << ")";
604
  return ss.str();
605
606
}

607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
bool LayoutNode::IsEqual(const LayoutNode *other, bool skip_index) const {
  bool ret = StructuralEqual()(this->InputShape(), other->InputShape());
  ret &= StructuralEqual()(this->OutputShape(), other->OutputShape());
  if (!skip_index) {
    ret &= StructuralEqual()(this->forward_index_, other->forward_index_);
  }
  return ret;
}

bool FragmentNode::IsEqual(const FragmentNode *other, bool skip_index) const {
  // Fragment Layout Comparison can skip the index comparison
  // when the output shape is the same, as we can do
  // a[i, j] = b[j, i] in register level.

  bool ret = StructuralEqual()(this->InputShape(), other->InputShape());
622
623
624
625
  if (!ret) {
    // may be broadcast case
    return true;
  }
626
627
628
  if (this->thread_range_.defined() && other->thread_range_.defined()) {
    ret &= StructuralEqual()(this->thread_range_, other->thread_range_);
  }
629
630
631
632
633
634
635
636
637
  ret &= StructuralEqual()(this->OutputShape(), other->OutputShape());
  ret &= StructuralEqual()(this->ReplicateExtent(), other->ReplicateExtent());
  ret &= StructuralEqual()(this->ThreadExtent(), other->ThreadExtent());
  if (!skip_index) {
    ret &= StructuralEqual()(this->forward_index_, other->forward_index_);
  }
  return ret;
}

638
639
640
641
642
643
644
void FragmentNode::RegisterReflection() {
  namespace refl = tvm::ffi::reflection;
  refl::ObjectDef<FragmentNode>()
      .def_ro("forward_thread", &FragmentNode::forward_thread_)
      .def_ro("replicate_size", &FragmentNode::replicate_size_);
}

645
TVM_FFI_STATIC_INIT_BLOCK() {
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
  namespace refl = tvm::ffi::reflection;
  refl::GlobalDef()
      .def_packed("tl.Layout",
                  [](PackedArgs args, Any *rv) {
                    *rv = Layout(args[0].cast<Array<IterVar>>(),
                                 args[1].cast<Array<PrimExpr>>());
                  })
      .def("tl.Layout_input_shape",
           [](Layout layout) { return layout->InputShape(); })
      .def("tl.Layout_output_shape",
           [](Layout layout) { return layout->OutputShape(); })
      .def("tl.Layout_inverse", [](Layout layout) { return layout->Inverse(); })
      .def("tl.Layout_index",
           [](Layout layout) { return layout->GetForwardIndex(); })
      .def("tl.Layout_forward_vars",
           [](Layout layout) { return layout->GetForwardVars(); })
662
663
664
665
666
      .def("tl.Layout_is_equal",
           [](Layout layout, Layout other) {
             const LayoutNode *other_node = other.as<LayoutNode>();
             return layout->IsEqual(other_node);
           })
667
668
669
670
671
672
673
674
      .def_packed("tl.Fragment",
                  [](PackedArgs args, Any *rv) {
                    *rv = Fragment(
                        /*forward_var=*/args[0].cast<Array<IterVar>>(),
                        /*forward_index=*/args[1].cast<Array<PrimExpr>>(),
                        /*forward_thread=*/args[2].cast<PrimExpr>(),
                        /*thread_replicate=*/args[3].cast<IterVar>());
                  })
675
676
677
678
679
      .def("tl.Fragment_is_equal",
           [](Fragment fragment, Fragment other) {
             const FragmentNode *other_node = other.as<FragmentNode>();
             return fragment->IsEqual(other_node);
           })
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
      .def("tl.Fragment_thread_size",
           [](Fragment fragment) { return fragment->ThreadExtent(); })
      .def("tl.Fragment_thread",
           [](Fragment fragment) { return fragment->GetForwardThread(); })
      .def("tl.Fragment_repeat",
           [](Fragment fragment, Array<PrimExpr> repeats, bool repeat_on_thread,
              bool lower_dim_first) {
             return fragment->Repeat(repeats, repeat_on_thread,
                                     lower_dim_first);
           })
      .def("tl.Fragment_replicate",
           [](Fragment fragment, int repeats) {
             return fragment->Replicate(repeats);
           })
      .def("tl.Fragment_condense_rep_var",
           [](Fragment fragment) { return fragment->CondenseReplicateVar(); })
      .def("tl.make_swizzled_layout",
697
698
699
700
701
702
703
704
705
706
           [](int stride, int continuous, int element_size, bool k_inner,
              bool allow_pad = true) {
             if (allow_pad) {
               return makeGemmABLayout(stride, continuous, continuous,
                                       element_size, k_inner);
             } else {
               return makeGemmABLayoutHopper(stride, continuous, continuous,
                                             element_size, k_inner);
             }
           })
707
708
709
710
711
      .def("tl.make_volta_swizzled_layout",
           [](int stride, int mat_continuous, bool is_a, bool k_inner) {
             return makeGemmVoltaABLayout(stride, mat_continuous, is_a,
                                          k_inner);
           })
712
713
714
715
716
      .def("tl.make_wgmma_swizzled_layout",
           [](int stride, int mat_continuous, int continuity, int element_size,
              bool k_inner) {
             return makeGemmABLayoutHopper(stride, mat_continuous, continuity,
                                           element_size, k_inner);
717
718
719
720
721
722
           })
      .def("tl.make_tcgen05mma_swizzled_layout",
           [](int stride, int mat_continuous, int continuity, int element_size,
              bool k_inner) {
             return makeGemmABLayoutSm100(stride, mat_continuous, continuity,
                                          element_size, k_inner);
723
724
           })
      .def("tl.make_full_bank_swizzled_layout",
725
           [](int stride, int continuous, int element_size) {
726
727
728
729
730
731
732
733
734
735
736
737
738
739
             return makeFullBankSwizzleLayout(stride, continuous, element_size);
           })
      .def("tl.make_half_bank_swizzled_layout",
           [](int stride, int continuous, int element_size) {
             return makeHalfBankSwizzleLayout(stride, continuous, element_size);
           })
      .def("tl.make_quarter_bank_swizzled_layout",
           [](int stride, int continuous, int element_size) {
             return makeQuarterBankSwizzleLayout(stride, continuous,
                                                 element_size);
           })
      .def("tl.make_linear_layout", [](int stride, int continuous) {
        return makeGemmLayoutLinear(stride, continuous);
      });
740
}
741

742
TVM_FFI_STATIC_INIT_BLOCK() {
743
744
745
  namespace refl = tvm::ffi::reflection;
  LayoutNode::RegisterReflection();
  FragmentNode::RegisterReflection();
746
}
747

748
749
} // namespace tl
} // namespace tvm