layout.cc 17.6 KB
Newer Older
1
2
3
4
5
6
/*!
 * \file layout/layout.cc
 *
 */

#include "layout.h"
7
#include <tvm/ffi/reflection/registry.h>
8
9
10
11
12
13
14
15
16
17
18
19
20

#include <tvm/arith/pattern.h>
#include <tvm/tir/op.h>
#include <tvm/tir/stmt_functor.h>

#include "arith/pattern_match.h"
#include "utils.h"

namespace tvm {
namespace tl {

using namespace tir;

21
static Var getPlaceholder(const std::string &s) {
22
23
24
25
26
27
28
29
  static std::unordered_map<std::string, Var> map;
  if (map.find(s) == map.end()) {
    map[s] = Var(s);
  }
  return map[s];
}

Var ReplicationPlaceholder() { return getPlaceholder("_rep"); }
30
31
32
Var InputPlaceholder(size_t idx) {
  return getPlaceholder(std::string{'_', char('i' + idx)});
}
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

Map<Var, Range> LayoutNode::getVarMap() const {
  Map<Var, Range> map;
  for (size_t i = 0; i < InputDim(); i++) {
    map.Set(InputPlaceholder(i), {0, input_size_[i]});
  }
  return map;
}

Map<Var, Range> FragmentNode::getVarMap() const {
  auto map = LayoutNode::getVarMap();
  map.Set(ReplicationPlaceholder(), {0, ReplicateExtent()});
  return map;
}

48
49
LayoutNode::LayoutNode(Array<PrimExpr> input_size,
                       Array<PrimExpr> forward_index) {
50
51
52
  input_size_ = input_size;
  arith::Analyzer analyzer;
  UpdateAnalyzer(&analyzer);
53
54
  forward_index_ = forward_index.Map(
      [&](const PrimExpr &e) { return analyzer.Simplify(e); });
55
56
57
58
59
60
61
62
63
64
}

Layout::Layout(Array<IterVar> forward_var, Array<PrimExpr> forward_index) {
  Map<Var, PrimExpr> vmap;
  Array<PrimExpr> input_size;
  for (size_t i = 0; i < forward_var.size(); i++) {
    vmap.Set(forward_var[i]->var, InputPlaceholder(i));
    CHECK(is_zero(forward_var[i]->dom->min));
    input_size.push_back(forward_var[i]->dom->extent);
  }
65
66
  forward_index =
      forward_index.Map([&](const PrimExpr &e) { return Substitute(e, vmap); });
67
68
69
70
71
72
73
74
75
76

  auto n = make_object<LayoutNode>(input_size, forward_index);
  data_ = std::move(n);
}

Layout::Layout(Array<PrimExpr> input_size, Array<PrimExpr> forward_index) {
  auto n = make_object<LayoutNode>(input_size, forward_index);
  data_ = std::move(n);
}

77
78
79
80
81
void LayoutNode::RegisterReflection() {
  namespace refl = tvm::ffi::reflection;
  refl::ObjectDef<LayoutNode>()
      .def_ro("input_size", &LayoutNode::input_size_)
      .def_ro("forward_index", &LayoutNode::forward_index_);
82
83
}

84
85
void LayoutNode::UpdateAnalyzer(arith::Analyzer *analyzer) const {
  for (const auto &[var, dom] : getVarMap()) {
86
87
88
89
    analyzer->Bind(var, dom);
  }
}

90
91
92
93
94
95
96
97
Array<PrimExpr> LayoutNode::GetForwardVars() const {
  Array<PrimExpr> vars;
  for (size_t i = 0; i < InputDim(); i++) {
    vars.push_back(InputPlaceholder(i));
  }
  return vars;
}

98
99
100
101
102
103
104
105
106
107
Array<PrimExpr> LayoutNode::OutputShape() const {
  Array<PrimExpr> ret(OutputDim(), 1);
  arith::Analyzer analyzer;
  UpdateAnalyzer(&analyzer);
  for (size_t i = 0; i < ret.size(); i++) {
    auto ist = analyzer.int_set(forward_index_[i] + 1);
    if (arith::is_neg_inf(ist.min()) && arith::is_pos_inf(ist.max())) {
      // X-OR Expression
      ret.Set(i, input_size_[i]);
    } else {
108
      // CHECK(is_one(ist.min())) << ist.min();
109
110
111
112
113
114
      ret.Set(i, ist.max());
    }
  }
  return ret;
}

115
116
117
Array<PrimExpr> LayoutNode::Forward(const Array<PrimExpr> &vars) const {
  if (vars.empty())
    return forward_index_;
118
119
120
121
122
123
124
125
  ICHECK_GE(vars.size(), InputDim());

  // Take the last InputDim() elements for transformation
  Array<PrimExpr> transform_vars;
  for (size_t i = vars.size() - InputDim(); i < vars.size(); i++) {
    transform_vars.push_back(vars[i]);
  }

126
127
  Map<Var, PrimExpr> vmap;
  for (size_t i = 0; i < InputDim(); i++) {
128
    vmap.Set(InputPlaceholder(i), transform_vars[i]);
129
  }
130
131

  Array<PrimExpr> transformed = forward_index_.Map(
132
      [&](const PrimExpr &e) { return Substitute(e, vmap); });
133
134
135
136
137
138
139
140
141
142
143

  // Concatenate with the remaining elements from vars
  Array<PrimExpr> result;
  for (size_t i = 0; i < vars.size() - InputDim(); i++) {
    result.push_back(vars[i]);
  }
  for (const auto &expr : transformed) {
    result.push_back(expr);
  }

  return result;
144
145
}

146
147
Fragment FragmentNode::Repeat(const Array<PrimExpr> &repeats,
                              bool repeat_on_thread,
148
149
150
151
152
153
                              bool lower_dim_first) const {
  ICHECK_EQ(repeats.size(), InputDim());
  Array<PrimExpr> new_input_size;
  Map<Var, PrimExpr> vmap;
  for (size_t i = 0; i < InputDim(); i++) {
    new_input_size.push_back(input_size_[i] * repeats[i]);
154
155
    vmap.Set(InputPlaceholder(i),
             FloorMod(InputPlaceholder(i), InputShape()[i]));
156
157
158
159
160
  }

  PrimExpr repeats_index = 0, repeat_stride = 1;
  if (lower_dim_first) {
    for (int i = InputDim() - 1; i >= 0; i--) {
161
162
      repeats_index +=
          repeat_stride * FloorDiv(InputPlaceholder(i), InputShape()[i]);
163
164
165
166
      repeat_stride *= repeats[i];
    }
  } else {
    for (size_t i = 0; i < InputDim(); i++) {
167
168
      repeats_index +=
          repeat_stride * FloorDiv(InputPlaceholder(i), InputShape()[i]);
169
170
171
172
173
174
      repeat_stride *= repeats[i];
    }
  }

  if (repeat_on_thread) {
    PrimExpr thread_size = ThreadExtent();
175
176
177
178
179
    auto new_forward_index = forward_index_.Map(
        [&](const PrimExpr &e) { return Substitute(e, vmap); });
    auto new_forward_thread =
        Substitute(forward_thread_, vmap) + thread_size * repeats_index;
    return Fragment(new_input_size, new_forward_index, new_forward_thread,
180
                    replicate_size_, std::nullopt);
181
182
183
184
185
186
  } else {
    ICHECK(OutputDim() == 1);
    PrimExpr frag_len = OutputShape()[0];
    Array<PrimExpr> new_forward_index = {Substitute(forward_index_[0], vmap) +
                                         frag_len * repeats_index};
    PrimExpr new_forward_thread = Substitute(forward_thread_, vmap);
187
    return Fragment(new_input_size, new_forward_index, new_forward_thread,
188
                    replicate_size_, std::nullopt);
189
190
191
192
193
194
  }
}

Fragment FragmentNode::Replicate(int repeats) const {
  ICHECK(repeats >= 1);
  Map<Var, PrimExpr> vmap;
195
196
  vmap.Set(ReplicationPlaceholder(),
           FloorMod(ReplicationPlaceholder(), ReplicateExtent()));
197
198
199
  PrimExpr new_forward_thread =
      Substitute(forward_thread_, vmap) +
      ThreadExtent() * FloorDiv(ReplicationPlaceholder(), ReplicateExtent());
200
  return Fragment(input_size_, forward_index_, new_forward_thread,
201
                  ReplicateExtent() * repeats, std::nullopt);
202
203
204
205
206
207
208
209
210
211
212
213
}

Fragment FragmentNode::DeReplicate() const {
  ICHECK(OutputDim() == 1);
  arith::Analyzer analyzer;
  UpdateAnalyzer(&analyzer);
  int factor = 1;
  auto rep_size = as_const_int(ReplicateExtent());
  auto idx_size = as_const_int(OutputShape()[0]);
  if (rep_size && idx_size) {
    factor = arith::ZeroAwareGCD(*rep_size, *idx_size);
  }
214
215
  if (factor == 1)
    return GetRef<Fragment>(this);
216
217

  Map<Var, PrimExpr> vmap;
218
219
  vmap.Set(ReplicationPlaceholder(), ReplicationPlaceholder() * factor +
                                         FloorMod(forward_index_[0], factor));
220
221
  PrimExpr new_forward_thread = Substitute(forward_thread_, vmap);
  Array<PrimExpr> new_forward_index = {FloorDiv(forward_index_[0], factor)};
222
  return Fragment(input_size_, new_forward_index, new_forward_thread,
223
                  int(*rep_size) / factor, std::nullopt);
224
225
}

226
227
228
229
Fragment FragmentNode::BindThreadRange(Range thread_range) const {
  auto n = make_object<FragmentNode>(*this);
  n->thread_range_ = thread_range;
  return Fragment(n);
230
231
}

232
233
Layout LayoutNode::Inverse() const {
  arith::Analyzer analyzer;
234
235
236
  arith::IterMapResult res =
      arith::DetectIterMap(forward_index_, getVarMap(), 1,
                           arith::IterMapLevel::Bijective, &analyzer);
237
238
  ICHECK(res->errors.empty())
      << "Layout " << DebugOutput() << " has errors: " << res->errors;
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

  auto outputs_shape = OutputShape();
  Array<PrimExpr> outputs;
  for (size_t i = 0; i < OutputDim(); i++) {
    outputs.push_back(InputPlaceholder(i));
  }

  auto inv = arith::InverseAffineIterMap(res->indices, outputs);

  Array<PrimExpr> backward_index;
  for (size_t i = 0; i < InputDim(); i++) {
    if (inv.find(InputPlaceholder(i)) != inv.end()) {
      backward_index.push_back(inv[InputPlaceholder(i)]);
    } else {
      backward_index.push_back(0);
    }
  }

  return Layout(outputs_shape, backward_index);
}

260
261
262
263
264
PrimExpr infer_fragment_index(const Map<Var, Range> &input_iters,
                              const PrimExpr &forward_thread,
                              arith::Analyzer *analyzer) {
  Array<arith::IterSplitExpr> splits = DivideUnusedIterators(
      {forward_thread}, ToIterVars(input_iters), analyzer);
265
266

  Array<arith::IterSplitExpr> split_without_rep;
267
  for (const auto &split : splits) {
268
    CHECK(split->source->source.as<Var>());
269
270
271
    if (split->source->source.as<Var>().value().same_as(
            ReplicationPlaceholder()))
      continue;
272
273
274
275
276
    split_without_rep.push_back(split);
  }
  return MakeFlattenedExpression(split_without_rep);
}

277
278
FragmentNode::FragmentNode(Array<PrimExpr> input_size,
                           Array<PrimExpr> forward_index,
279
280
281
282
283
284
285
                           PrimExpr forward_thread, PrimExpr replicate_size) {
  input_size_ = input_size;
  replicate_size_ = replicate_size;
  arith::Analyzer analyzer;
  UpdateAnalyzer(&analyzer);
  forward_thread_ = analyzer.Simplify(forward_thread);
  if (forward_index.empty()) {
286
287
    forward_index = {
        infer_fragment_index(getVarMap(), forward_thread_, &analyzer)};
288
  }
289
290
  forward_index_ = forward_index.Map(
      [&](const PrimExpr &e) { return analyzer.Simplify(e); });
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
}

Fragment::Fragment(Array<IterVar> forward_var, Array<PrimExpr> forward_index,
                   PrimExpr forward_thread, IterVar thread_replicate) {
  Map<Var, PrimExpr> vmap;
  Array<PrimExpr> input_size;
  PrimExpr replicate_size = 1;
  for (size_t i = 0; i < forward_var.size(); i++) {
    vmap.Set(forward_var[i]->var, InputPlaceholder(i));
    CHECK(is_zero(forward_var[i]->dom->min));
    input_size.push_back(forward_var[i]->dom->extent);
  }
  if (thread_replicate.defined()) {
    ICHECK(is_zero(thread_replicate->dom->min));
    replicate_size = thread_replicate->dom->extent;
    vmap.Set(thread_replicate->var, ReplicationPlaceholder());
  }
308
309
  forward_index =
      forward_index.Map([&](const PrimExpr &e) { return Substitute(e, vmap); });
310
311
  forward_thread = Substitute(forward_thread, vmap);

312
313
  auto n = make_object<FragmentNode>(input_size, forward_index, forward_thread,
                                     replicate_size);
314
315
316
317
  data_ = std::move(n);
}

Fragment::Fragment(Array<PrimExpr> input_size, Array<PrimExpr> forward_index,
318
319
                   PrimExpr forward_thread, PrimExpr replicate_size,
                   Optional<Var> replicate_var) {
320
  if (replicate_var.defined()) {
321
322
    forward_thread = Substitute(
        forward_thread, {{replicate_var.value(), ReplicationPlaceholder()}});
323
  }
324
325
  auto n = make_object<FragmentNode>(input_size, forward_index, forward_thread,
                                     replicate_size);
326
327
328
329
330
331
332
333
334
335
336
  data_ = std::move(n);
}

PrimExpr FragmentNode::ThreadExtent() const {
  Array<PrimExpr> ret(OutputDim(), 1);
  arith::Analyzer analyzer;
  UpdateAnalyzer(&analyzer);
  auto ist = analyzer.int_set(forward_thread_ + 1);
  return ist.max();
}

337
338
339
340
341
342
343
344
345
346
347
Array<PrimExpr> FragmentNode::GetForwardVars() const {
  Array<PrimExpr> vars;
  if (*as_const_int(ReplicateExtent()) > 1) {
    vars.push_back(ReplicationPlaceholder());
  }
  for (size_t i = 0; i < InputDim(); i++) {
    vars.push_back(InputPlaceholder(i));
  }
  return vars;
}

348
349
PrimExpr FragmentNode::ForwardThread(const Array<PrimExpr> &vars,
                                     const Optional<PrimExpr> &rep_var) const {
350
351
352
353
354
  Map<Var, PrimExpr> vmap;
  ICHECK_EQ(vars.size(), InputDim());
  for (size_t i = 0; i < InputDim(); i++) {
    vmap.Set(InputPlaceholder(i), vars[i]);
  }
355
356
  if (rep_var.defined())
    vmap.Set(ReplicationPlaceholder(), rep_var.value());
357
358
359
360
361
362
363
364
365

  return Substitute(forward_thread_, vmap);
}

Layout FragmentNode::Inverse() const {
  auto input_size_copy = input_size_;
  input_size_copy.push_back(ReplicateExtent());
  auto forward_index_copy = forward_index_;
  forward_index_copy.push_back(
366
367
      Substitute(forward_thread_,
                 {{ReplicationPlaceholder(), InputPlaceholder(InputDim())}}));
368
369
370
371
372
373
374
375
376
377
378
  auto fwd = Layout(input_size_copy, forward_index_copy);
  auto bwd = fwd->Inverse();
  return bwd;
}

Fragment FragmentNode::CondenseReplicateVar() const {
  arith::Analyzer analyzer;
  auto input_iters = getVarMap();
  input_iters.Set(ReplicationPlaceholder(), {0, ReplicateExtent()});
  PrimExpr new_forward_thread;
  IterVar new_thread_replicate;
379
380
381
  std::tie(new_forward_thread, new_thread_replicate) =
      CompressIterator(forward_thread_, ToIterVars(input_iters),
                       ReplicationPlaceholder(), &analyzer);
382
383
384
385
  return Fragment(input_size_, forward_index_, new_forward_thread,
                  new_thread_replicate->dom->extent, new_thread_replicate->var);
}

386
387
std::string LayoutNode::DebugOutput() const {
  std::stringstream ss;
388
389
390
  ss << "Layout(" << InputShape() << " -> " << OutputShape()
     << ", transform: " << GetForwardVars() << " -> " << GetForwardIndex()
     << ")";
391
  return ss.str();
392
393
}

394
395
std::string FragmentNode::DebugOutput() const {
  std::stringstream ss;
396
397
398
399
400
401
402
403
  ss << "Fragment(" << InputShape() << " -> " << OutputShape()
     << ", replicate: " << ReplicateExtent() << ", thread: " << ThreadExtent()
     << ", forward_thread: " << forward_thread_
     << ", forward_index: " << GetForwardIndex();
  if (thread_range_.defined()) {
    ss << ", thread_range: " << thread_range_;
  }
  ss << ")";
404
  return ss.str();
405
406
}

407
408
bool LayoutNode::SEqualReduce(const LayoutNode *other,
                              SEqualReducer equal) const {
409
410
411
412
  return equal(this->InputShape(), other->InputShape()) &&
         equal(this->forward_index_, other->forward_index_);
}

413
414
bool FragmentNode::SEqualReduce(const FragmentNode *other,
                                SEqualReducer equal) const {
415
416
417
418
419
420
421
  return equal(this->ReplicateExtent(), other->ReplicateExtent()) &&
         equal(this->InputShape(), other->InputShape()) &&
         equal(this->ThreadExtent(), other->ThreadExtent()) &&
         equal(this->forward_index_, other->forward_index_) &&
         equal(this->forward_thread_, other->forward_thread_);
}

422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
bool LayoutNode::IsEqual(const LayoutNode *other, bool skip_index) const {
  bool ret = StructuralEqual()(this->InputShape(), other->InputShape());
  ret &= StructuralEqual()(this->OutputShape(), other->OutputShape());
  if (!skip_index) {
    ret &= StructuralEqual()(this->forward_index_, other->forward_index_);
  }
  return ret;
}

bool FragmentNode::IsEqual(const FragmentNode *other, bool skip_index) const {
  // Fragment Layout Comparison can skip the index comparison
  // when the output shape is the same, as we can do
  // a[i, j] = b[j, i] in register level.

  bool ret = StructuralEqual()(this->InputShape(), other->InputShape());
437
438
439
440
  if (!ret) {
    // may be broadcast case
    return true;
  }
441
442
443
  if (this->thread_range_.defined() && other->thread_range_.defined()) {
    ret &= StructuralEqual()(this->thread_range_, other->thread_range_);
  }
444
445
446
447
448
449
450
451
452
  ret &= StructuralEqual()(this->OutputShape(), other->OutputShape());
  ret &= StructuralEqual()(this->ReplicateExtent(), other->ReplicateExtent());
  ret &= StructuralEqual()(this->ThreadExtent(), other->ThreadExtent());
  if (!skip_index) {
    ret &= StructuralEqual()(this->forward_index_, other->forward_index_);
  }
  return ret;
}

453
454
455
456
457
458
459
void FragmentNode::RegisterReflection() {
  namespace refl = tvm::ffi::reflection;
  refl::ObjectDef<FragmentNode>()
      .def_ro("forward_thread", &FragmentNode::forward_thread_)
      .def_ro("replicate_size", &FragmentNode::replicate_size_);
}

460
461
462
TVM_REGISTER_NODE_TYPE(LayoutNode);
TVM_REGISTER_NODE_TYPE(FragmentNode);

463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
TVM_FFI_STATIC_INIT_BLOCK({
  namespace refl = tvm::ffi::reflection;
  refl::GlobalDef()
      .def_packed("tl.Layout",
                  [](PackedArgs args, Any *rv) {
                    *rv = Layout(args[0].cast<Array<IterVar>>(),
                                 args[1].cast<Array<PrimExpr>>());
                  })
      .def("tl.Layout_input_shape",
           [](Layout layout) { return layout->InputShape(); })
      .def("tl.Layout_output_shape",
           [](Layout layout) { return layout->OutputShape(); })
      .def("tl.Layout_inverse", [](Layout layout) { return layout->Inverse(); })
      .def("tl.Layout_index",
           [](Layout layout) { return layout->GetForwardIndex(); })
      .def("tl.Layout_forward_vars",
           [](Layout layout) { return layout->GetForwardVars(); })
      .def_packed("tl.Fragment",
                  [](PackedArgs args, Any *rv) {
                    *rv = Fragment(
                        /*forward_var=*/args[0].cast<Array<IterVar>>(),
                        /*forward_index=*/args[1].cast<Array<PrimExpr>>(),
                        /*forward_thread=*/args[2].cast<PrimExpr>(),
                        /*thread_replicate=*/args[3].cast<IterVar>());
                  })
      .def("tl.Fragment_thread_size",
           [](Fragment fragment) { return fragment->ThreadExtent(); })
      .def("tl.Fragment_thread",
           [](Fragment fragment) { return fragment->GetForwardThread(); })
      .def("tl.Fragment_repeat",
           [](Fragment fragment, Array<PrimExpr> repeats, bool repeat_on_thread,
              bool lower_dim_first) {
             return fragment->Repeat(repeats, repeat_on_thread,
                                     lower_dim_first);
           })
      .def("tl.Fragment_replicate",
           [](Fragment fragment, int repeats) {
             return fragment->Replicate(repeats);
           })
      .def("tl.Fragment_condense_rep_var",
           [](Fragment fragment) { return fragment->CondenseReplicateVar(); })
      .def("tl.make_swizzled_layout",
           [](int stride, int continuous, int element_size) {
             return makeGemmABLayout(stride, continuous, continuous,
                                     element_size, 0);
           });
509
510
});

511
512
513
514
TVM_FFI_STATIC_INIT_BLOCK({
  namespace refl = tvm::ffi::reflection;
  LayoutNode::RegisterReflection();
  FragmentNode::RegisterReflection();
515
516
});

517
518
} // namespace tl
} // namespace tvm