atomic.h 29 KB
Newer Older
1
2
3
4
5
6
7
#pragma once

#ifndef __CUDACC_RTC__
#include <cuda_runtime.h>
#endif

#include <cuda/atomic>
8
#include <cuda_fp16.h>
9
10
11
12
13
14
#include <cutlass/numeric_types.h>

using cutlass::bfloat16_t;
using cutlass::half_t;

#define TL_DEVICE __forceinline__ __device__
15
16
17
18
19
#define TL_NOT_IMPLEMENTED()                                                   \
  {                                                                            \
    printf("%s not implemented\n", __PRETTY_FUNCTION__);                       \
    asm volatile("brkpt;\n");                                                  \
  }
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
template <typename T> struct normalize_atomic_type {
  using type = T;
};

template <> struct normalize_atomic_type<half_t> {
  using type = half;
};

#if (defined(__CUDA_ARCH_LIST__) && (__CUDA_ARCH_LIST__ > 750))
template <> struct normalize_atomic_type<bfloat16_t> {
  using type = __nv_bfloat16;
};
#endif

template <typename T1, typename T2> TL_DEVICE T1 cuda_cast(T2 val) {
  return T1(val);
}

template <> TL_DEVICE half cuda_cast<half, float>(float val) {
  return __float2half(val);
}

#if (defined(__CUDA_ARCH_LIST__) && (__CUDA_ARCH_LIST__ > 750))
template <> TL_DEVICE __nv_bfloat16 cuda_cast<__nv_bfloat16, float>(float val) {
  return __float2bfloat16(val);
}
#endif

template <typename T1, typename T2>
TL_DEVICE void AtomicMax(T1 &ref, T2 val,
                         int memory_order = int(cuda::memory_order_relaxed)) {
  using NT1 = typename normalize_atomic_type<T1>::type;
  T1 *address = &ref;
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
  if constexpr (std::is_same_v<NT1, half> ||
                std::is_same_v<NT1, __nv_bfloat16>) {
    // There is no implementation of atomicMax for half and bf16 in cuda.
    // We simulate this process by atomicCAS loop.
    unsigned short *address_as_ushort =
        reinterpret_cast<unsigned short *>(address);
    unsigned short val_as_ushort = *reinterpret_cast<unsigned short *>(&val);
    unsigned short old_val_ushort = *address_as_ushort;
    while (val > *reinterpret_cast<T1 *>(&old_val_ushort)) {
      unsigned short assumed_val_ushort = old_val_ushort;
      old_val_ushort =
          atomicCAS(address_as_ushort, assumed_val_ushort, val_as_ushort);
      if (assumed_val_ushort == old_val_ushort) {
        break;
      }
    }
69
  } else {
70
#if CUDART_VERSION >= 11080
71
72
    cuda::atomic_ref<NT1, cuda::thread_scope_device> aref(*address);
    aref.fetch_max(cuda_cast<NT1>(val), cuda::memory_order(memory_order));
73
74
75
#else
    TL_NOT_IMPLEMENTED();
#endif
76
77
78
79
80
81
82
83
  }
}

template <typename T1, typename T2>
TL_DEVICE T1 AtomicMaxRet(T1 &ref, T2 val,
                          int memory_order = int(cuda::memory_order_relaxed)) {
  using NT1 = typename normalize_atomic_type<T1>::type;
  T1 *address = &ref;
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
  if constexpr (std::is_same_v<NT1, half> ||
                std::is_same_v<NT1, __nv_bfloat16>) {
    unsigned short *address_as_ushort =
        reinterpret_cast<unsigned short *>(address);
    unsigned short val_as_ushort = *reinterpret_cast<unsigned short *>(&val);
    unsigned short old_val_ushort = *address_as_ushort;
    while (val > *reinterpret_cast<T1 *>(&old_val_ushort)) {
      unsigned short assumed_val_ushort = old_val_ushort;
      old_val_ushort =
          atomicCAS(address_as_ushort, assumed_val_ushort, val_as_ushort);
      if (assumed_val_ushort == old_val_ushort) {
        break;
      }
    }
    return static_cast<T1>(*reinterpret_cast<T1 *>(&old_val_ushort));
99
  } else {
100
#if CUDART_VERSION >= 11080
101
102
103
    cuda::atomic_ref<NT1, cuda::thread_scope_device> aref(*address);
    return static_cast<T1>(
        aref.fetch_max(cuda_cast<NT1>(val), cuda::memory_order(memory_order)));
104
105
106
#else
    TL_NOT_IMPLEMENTED();
#endif
107
108
109
110
111
112
113
114
  }
}

template <typename T1, typename T2>
TL_DEVICE void AtomicMin(T1 &ref, T2 val,
                         int memory_order = int(cuda::memory_order_relaxed)) {
  using NT1 = typename normalize_atomic_type<T1>::type;
  T1 *address = &ref;
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
  if constexpr (std::is_same_v<NT1, half> ||
                std::is_same_v<NT1, __nv_bfloat16>) {
    // There is no implementation of atomicMin for half and bf16 in cuda.
    // We simulate this process by atomicCAS loop.
    unsigned short *address_as_ushort =
        reinterpret_cast<unsigned short *>(address);
    unsigned short val_as_ushort = *reinterpret_cast<unsigned short *>(&val);
    unsigned short old_val_ushort = *address_as_ushort;
    while (val < *reinterpret_cast<T1 *>(&old_val_ushort)) {
      unsigned short assumed_val_ushort = old_val_ushort;
      old_val_ushort =
          atomicCAS(address_as_ushort, assumed_val_ushort, val_as_ushort);
      if (assumed_val_ushort == old_val_ushort) {
        break;
      }
    }
131
  } else {
132
#if CUDART_VERSION >= 11080
133
    cuda::atomic_ref<NT1, cuda::thread_scope_device> aref(*address);
134
135
136
137
138
    return static_cast<T1>(
        aref.fetch_min(cuda_cast<NT1>(val), cuda::memory_order(memory_order)));
#else
    TL_NOT_IMPLEMENTED();
#endif
139
140
141
142
143
144
145
146
  }
}

template <typename T1, typename T2>
TL_DEVICE T1 AtomicMinRet(T1 &ref, T2 val,
                          int memory_order = int(cuda::memory_order_relaxed)) {
  using NT1 = typename normalize_atomic_type<T1>::type;
  T1 *address = &ref;
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
  if constexpr (std::is_same_v<NT1, half> ||
                std::is_same_v<NT1, __nv_bfloat16>) {
    unsigned short *address_as_ushort =
        reinterpret_cast<unsigned short *>(address);
    unsigned short val_as_ushort = *reinterpret_cast<unsigned short *>(&val);
    unsigned short old_val_ushort = *address_as_ushort;
    while (val < *reinterpret_cast<T1 *>(&old_val_ushort)) {
      unsigned short assumed_val_ushort = old_val_ushort;
      old_val_ushort =
          atomicCAS(address_as_ushort, assumed_val_ushort, val_as_ushort);
      if (assumed_val_ushort == old_val_ushort) {
        break;
      }
    }
    return static_cast<T1>(*reinterpret_cast<T1 *>(&old_val_ushort));
162
  } else {
163
#if CUDART_VERSION >= 11080
164
165
166
    cuda::atomic_ref<NT1, cuda::thread_scope_device> aref(*address);
    return static_cast<T1>(
        aref.fetch_min(cuda_cast<NT1>(val), cuda::memory_order(memory_order)));
167
168
169
#else
    TL_NOT_IMPLEMENTED();
#endif
170
171
172
173
174
175
176
177
  }
}

template <typename T1, typename T2>
TL_DEVICE void AtomicAdd(T1 &ref, T2 val,
                         int memory_order = int(cuda::memory_order_relaxed)) {
  using NT1 = typename normalize_atomic_type<T1>::type;
  T1 *address = &ref;
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
  if constexpr (std::is_same_v<NT1, half> ||
                std::is_same_v<NT1, __nv_bfloat16>) {
    if (memory_order == int(cuda::memory_order_relaxed)) {
      atomicAdd(reinterpret_cast<NT1 *>(address), static_cast<NT1>(val));
    } else {
      // Since atomic ref do not support memory order, we need to inline ptx
      // code here for each situation
      if constexpr (std::is_same_v<NT1, half>) {
        // fp16
        __half ret_val;
        unsigned short ret_val_cast =
            *reinterpret_cast<unsigned short *>(&ret_val);
        unsigned long long ref_address =
            reinterpret_cast<unsigned long long>(address);
        unsigned short val_cast = *reinterpret_cast<unsigned short *>(&val);
        if (memory_order == int(cuda::memory_order_release) ||
            memory_order == int(cuda::memory_order_consume)) {
          asm volatile("atom.release.gpu.global.add.noftz.f16 %0, [%1], %2;"
                       : "=h"(ret_val_cast)
                       : "l"(ref_address), "h"(val_cast)
                       : "memory");
        } else if (memory_order == int(cuda::memory_order_acquire)) {
          asm volatile("atom.acquire.gpu.global.add.noftz.f16 %0, [%1], %2;"
                       : "=h"(ret_val_cast)
                       : "l"(ref_address), "h"(val_cast)
                       : "memory");
        } else if (memory_order == int(cuda::memory_order_acq_rel) ||
                   memory_order == int(cuda::memory_order_seq_cst)) {
          asm volatile("atom.acq_rel.gpu.global.add.noftz.f16 %0, [%1], %2;"
                       : "=h"(ret_val_cast)
                       : "l"(ref_address), "h"(val_cast)
                       : "memory");
        }
      } else if constexpr (std::is_same_v<NT1, __nv_bfloat16>) {
        // bf16
        __nv_bfloat16 ret_val;
        unsigned short ret_val_cast =
            *reinterpret_cast<unsigned short *>(&ret_val);
        unsigned long long ref_address =
            reinterpret_cast<unsigned long long>(address);
        unsigned short val_cast = *reinterpret_cast<unsigned short *>(&val);
        if (memory_order == int(cuda::memory_order_release) ||
            memory_order == int(cuda::memory_order_consume)) {
          asm volatile("atom.release.gpu.global.add.noftz.bf16 %0, [%1], %2;"
                       : "=h"(ret_val_cast)
                       : "l"(ref_address), "h"(val_cast)
                       : "memory");
        } else if (memory_order == int(cuda::memory_order_acquire)) {
          asm volatile("atom.acquire.gpu.global.add.noftz.bf16 %0, [%1], %2;"
                       : "=h"(ret_val_cast)
                       : "l"(ref_address), "h"(val_cast)
                       : "memory");
        } else if (memory_order == int(cuda::memory_order_acq_rel) ||
                   memory_order == int(cuda::memory_order_seq_cst)) {
          asm volatile("atom.acq_rel.gpu.global.add.noftz.bf16 %0, [%1], %2;"
                       : "=h"(ret_val_cast)
                       : "l"(ref_address), "h"(val_cast)
                       : "memory");
        }
      }
    }
239
  } else {
240
#if CUDART_VERSION >= 11080
241
242
    cuda::atomic_ref<NT1, cuda::thread_scope_device> aref(*address);
    aref.fetch_add(cuda_cast<NT1>(val), cuda::memory_order(memory_order));
243
244
245
#else
    TL_NOT_IMPLEMENTED();
#endif
246
247
248
249
250
251
252
253
  }
}

template <typename T1, typename T2>
TL_DEVICE T1 AtomicAddRet(T1 &ref, T2 val,
                          int memory_order = int(cuda::memory_order_relaxed)) {
  using NT1 = typename normalize_atomic_type<T1>::type;
  T1 *address = &ref;
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
  if constexpr (std::is_same_v<NT1, half> ||
                std::is_same_v<NT1, __nv_bfloat16>) {
    if (memory_order == int(cuda::memory_order_relaxed)) {
      return static_cast<T1>(
          atomicAdd(reinterpret_cast<NT1 *>(address), static_cast<NT1>(val)));
    } else {
      if constexpr (std::is_same_v<NT1, half>) {
        // fp16
        __half ret_val;
        unsigned short ret_val_cast =
            *reinterpret_cast<unsigned short *>(&ret_val);
        unsigned long long ref_address =
            reinterpret_cast<unsigned long long>(address);
        unsigned short val_cast = *reinterpret_cast<unsigned short *>(&val);
        if (memory_order == int(cuda::memory_order_release) ||
            memory_order == int(cuda::memory_order_consume)) {
          asm volatile("atom.release.gpu.global.add.noftz.f16 %0, [%1], %2;"
                       : "=h"(ret_val_cast)
                       : "l"(ref_address), "h"(val_cast)
                       : "memory");
        } else if (memory_order == int(cuda::memory_order_acquire)) {
          asm volatile("atom.acquire.gpu.global.add.noftz.f16 %0, [%1], %2;"
                       : "=h"(ret_val_cast)
                       : "l"(ref_address), "h"(val_cast)
                       : "memory");
        } else if (memory_order == int(cuda::memory_order_acq_rel) ||
                   memory_order == int(cuda::memory_order_seq_cst)) {
          asm volatile("atom.acq_rel.gpu.global.add.noftz.f16 %0, [%1], %2;"
                       : "=h"(ret_val_cast)
                       : "l"(ref_address), "h"(val_cast)
                       : "memory");
        }
        return static_cast<T1>(*reinterpret_cast<__half *>(&ret_val_cast));
      } else if constexpr (std::is_same_v<NT1, __nv_bfloat16>) {
        // bf16
        __nv_bfloat16 ret_val;
        unsigned short ret_val_cast =
            *reinterpret_cast<unsigned short *>(&ret_val);
        unsigned long long ref_address =
            reinterpret_cast<unsigned long long>(address);
        unsigned short val_cast = *reinterpret_cast<unsigned short *>(&val);
        if (memory_order == int(cuda::memory_order_release) ||
            memory_order == int(cuda::memory_order_consume)) {
          asm volatile("atom.release.gpu.global.add.noftz.bf16 %0, [%1], %2;"
                       : "=h"(ret_val_cast)
                       : "l"(ref_address), "h"(val_cast)
                       : "memory");
        } else if (memory_order == int(cuda::memory_order_acquire)) {
          asm volatile("atom.acquire.gpu.global.add.noftz.bf16 %0, [%1], %2;"
                       : "=h"(ret_val_cast)
                       : "l"(ref_address), "h"(val_cast)
                       : "memory");
        } else if (memory_order == int(cuda::memory_order_acq_rel) ||
                   memory_order == int(cuda::memory_order_seq_cst)) {
          asm volatile("atom.acq_rel.gpu.global.add.noftz.bf16 %0, [%1], %2;"
                       : "=h"(ret_val_cast)
                       : "l"(ref_address), "h"(val_cast)
                       : "memory");
        }
        return static_cast<T1>(
            *reinterpret_cast<__nv_bfloat16 *>(&ret_val_cast));
      }
    }
317
  } else {
318
#if CUDART_VERSION >= 11080
319
320
321
    cuda::atomic_ref<NT1, cuda::thread_scope_device> aref(*address);
    return static_cast<T1>(
        aref.fetch_add(cuda_cast<NT1>(val), cuda::memory_order(memory_order)));
322
323
324
#else
    TL_NOT_IMPLEMENTED();
#endif
325
326
327
  }
}

328
329
330
// TODO add memory_order for vectorized atomic add
TL_DEVICE void AtomicAddx2(half_t *ref, half_t *val,
                           int memory_order = int(cuda::memory_order_relaxed)) {
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
  if (memory_order == int(cuda::memory_order_relaxed)) {
    atomicAdd(reinterpret_cast<half2 *>(ref),
              static_cast<half2>(*reinterpret_cast<half2 *>(val)));
  } else {
    // Since atomicAdd does not support memory order, atomic_ref does not
    // support vectorized atomic operation we can only inline ptx code here
    // Note: Vectorized atomic operations only support global space
    // Note: for 16-bit value, we need to reinterpret_cast the value to unsigned
    // short and use "h" register in assembly
    __half2 add_val = *reinterpret_cast<__half2 *>(val);
    unsigned short add_val_x_cast =
        *reinterpret_cast<unsigned short *>(&add_val.x);
    unsigned short add_val_y_cast =
        *reinterpret_cast<unsigned short *>(&add_val.y);
    unsigned long long ref_addr = reinterpret_cast<unsigned long long>(ref);
    __half ret_val_x, ret_val_y;
    unsigned short ret_val_x_cast =
        *reinterpret_cast<unsigned short *>(&ret_val_x);
    unsigned short ret_val_y_cast =
        *reinterpret_cast<unsigned short *>(&ret_val_y);
    if (memory_order == int(cuda::memory_order_release) ||
        memory_order == int(cuda::memory_order_consume)) {
      asm volatile(
          "atom.release.gpu.global.add.noftz.v2.f16 {%0,%1}, [%2], {%3,%4};"
          : "=h"(ret_val_x_cast), "=h"(ret_val_y_cast)
          : "l"(ref_addr), "h"(add_val_x_cast), "h"(add_val_y_cast)
          : "memory");
    } else if (memory_order == int(cuda::memory_order_acquire)) {
      asm volatile(
          "atom.acquire.gpu.global.add.noftz.v2.f16 {%0,%1}, [%2], {%3,%4};"
          : "=h"(ret_val_x_cast), "=h"(ret_val_y_cast)
          : "l"(ref_addr), "h"(add_val_x_cast), "h"(add_val_y_cast)
          : "memory");
    } else if (memory_order == int(cuda::memory_order_acq_rel) ||
               memory_order == int(cuda::memory_order_seq_cst)) {
      asm volatile(
          "atom.acq_rel.gpu.global.add.noftz.v2.f16 {%0,%1}, [%2], {%3,%4};"
          : "=h"(ret_val_x_cast), "=h"(ret_val_y_cast)
          : "l"(ref_addr), "h"(add_val_x_cast), "h"(add_val_y_cast)
          : "memory");
    }
  }
373
374
}

375
376
377
TL_DEVICE half2
AtomicAddx2Ret(half_t *ref, half_t *val,
               int memory_order = int(cuda::memory_order_relaxed)) {
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
  if (memory_order == int(cuda::memory_order_relaxed)) {
    return atomicAdd(reinterpret_cast<half2 *>(ref),
                     static_cast<half2>(*reinterpret_cast<half2 *>(val)));
  } else {
    __half2 add_val = *reinterpret_cast<__half2 *>(val);
    unsigned short add_val_x_cast =
        *reinterpret_cast<unsigned short *>(&add_val.x);
    unsigned short add_val_y_cast =
        *reinterpret_cast<unsigned short *>(&add_val.y);
    unsigned long long ref_addr = reinterpret_cast<unsigned long long>(ref);
    __half ret_val_x, ret_val_y;
    unsigned short ret_val_x_cast =
        *reinterpret_cast<unsigned short *>(&ret_val_x);
    unsigned short ret_val_y_cast =
        *reinterpret_cast<unsigned short *>(&ret_val_y);
    if (memory_order == int(cuda::memory_order_release) ||
        memory_order == int(cuda::memory_order_consume)) {
      asm volatile(
          "atom.release.gpu.global.add.noftz.v2.f16 {%0,%1}, [%2], {%3,%4};"
          : "=h"(ret_val_x_cast), "=h"(ret_val_y_cast)
          : "l"(ref_addr), "h"(add_val_x_cast), "h"(add_val_y_cast)
          : "memory");
    } else if (memory_order == int(cuda::memory_order_acquire)) {
      asm volatile(
          "atom.acquire.gpu.global.add.noftz.v2.f16 {%0,%1}, [%2], {%3,%4};"
          : "=h"(ret_val_x_cast), "=h"(ret_val_y_cast)
          : "l"(ref_addr), "h"(add_val_x_cast), "h"(add_val_y_cast)
          : "memory");
    } else if (memory_order == int(cuda::memory_order_acq_rel) ||
               memory_order == int(cuda::memory_order_seq_cst)) {
      asm volatile(
          "atom.acq_rel.gpu.global.add.noftz.v2.f16 {%0,%1}, [%2], {%3,%4};"
          : "=h"(ret_val_x_cast), "=h"(ret_val_y_cast)
          : "l"(ref_addr), "h"(add_val_x_cast), "h"(add_val_y_cast)
          : "memory");
    }
    return half2(*reinterpret_cast<__half *>(&ret_val_x_cast),
                 *reinterpret_cast<__half *>(&ret_val_y_cast));
  }
417
418
419
}

#if (defined(__CUDA_ARCH_LIST__) && (__CUDA_ARCH_LIST__ > 750))
420
421
TL_DEVICE void AtomicAddx2(bfloat16_t *ref, bfloat16_t *val,
                           int memory_order = int(cuda::memory_order_relaxed)) {
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
  if (memory_order == int(cuda::memory_order_relaxed)) {
    atomicAdd(
        reinterpret_cast<__nv_bfloat162 *>(ref),
        static_cast<__nv_bfloat162>(*reinterpret_cast<__nv_bfloat162 *>(val)));
  } else {
    __nv_bfloat162 add_val = *reinterpret_cast<__nv_bfloat162 *>(val);
    unsigned short add_val_x_cast =
        *reinterpret_cast<unsigned short *>(&add_val.x);
    unsigned short add_val_y_cast =
        *reinterpret_cast<unsigned short *>(&add_val.y);
    unsigned long long ref_addr = reinterpret_cast<unsigned long long>(ref);
    __nv_bfloat162 ret_val;
    unsigned short ret_val_x_cast =
        *reinterpret_cast<unsigned short *>(&ret_val.x);
    unsigned short ret_val_y_cast =
        *reinterpret_cast<unsigned short *>(&ret_val.y);
    if (memory_order == int(cuda::memory_order_release) ||
        memory_order == int(cuda::memory_order_consume)) {
      asm volatile("atom.release.gpu.global.add.v2.bf16 {%0,%1}, [%2], {%3,%4};"
                   : "=h"(ret_val_x_cast), "=h"(ret_val_y_cast)
                   : "l"(ref_addr), "h"(add_val_x_cast), "h"(add_val_y_cast)
                   : "memory");
    } else if (memory_order == int(cuda::memory_order_acquire)) {
      asm volatile("atom.acquire.gpu.global.add.v2.bf16 {%0,%1}, [%2], {%3,%4};"
                   : "=h"(ret_val_x_cast), "=h"(ret_val_y_cast)
                   : "l"(ref_addr), "h"(add_val_x_cast), "h"(add_val_y_cast)
                   : "memory");
    } else if (memory_order == int(cuda::memory_order_acq_rel) ||
               memory_order == int(cuda::memory_order_seq_cst)) {
      asm volatile("atom.acq_rel.gpu.global.add.v2.bf16 {%0,%1}, [%2], {%3,%4};"
                   : "=h"(ret_val_x_cast), "=h"(ret_val_y_cast)
                   : "l"(ref_addr), "h"(add_val_x_cast), "h"(add_val_y_cast)
                   : "memory");
    }
  }
457
458
}

459
460
461
TL_DEVICE __nv_bfloat162
AtomicAddx2Ret(bfloat16_t *ref, bfloat16_t *val,
               int memory_order = int(cuda::memory_order_relaxed)) {
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
  if (memory_order == int(cuda::memory_order_relaxed)) {
    return atomicAdd(
        reinterpret_cast<__nv_bfloat162 *>(ref),
        static_cast<__nv_bfloat162>(*reinterpret_cast<__nv_bfloat162 *>(val)));
  } else {
    __nv_bfloat162 add_val = *reinterpret_cast<__nv_bfloat162 *>(val);
    unsigned short add_val_x_cast =
        *reinterpret_cast<unsigned short *>(&add_val.x);
    unsigned short add_val_y_cast =
        *reinterpret_cast<unsigned short *>(&add_val.y);
    unsigned long long ref_addr = reinterpret_cast<unsigned long long>(ref);
    __nv_bfloat162 ret_val;
    unsigned short ret_val_x_cast =
        *reinterpret_cast<unsigned short *>(&ret_val.x);
    unsigned short ret_val_y_cast =
        *reinterpret_cast<unsigned short *>(&ret_val.y);
    if (memory_order == int(cuda::memory_order_release) ||
        memory_order == int(cuda::memory_order_consume)) {
      asm volatile("atom.release.gpu.global.add.v2.bf16 {%0,%1}, [%2], {%3,%4};"
                   : "=h"(ret_val_x_cast), "=h"(ret_val_y_cast)
                   : "l"(ref_addr), "h"(add_val_x_cast), "h"(add_val_y_cast)
                   : "memory");
    } else if (memory_order == int(cuda::memory_order_acquire)) {
      asm volatile("atom.acquire.gpu.global.add.v2.bf16 {%0,%1}, [%2], {%3,%4};"
                   : "=h"(ret_val_x_cast), "=h"(ret_val_y_cast)
                   : "l"(ref_addr), "h"(add_val_x_cast), "h"(add_val_y_cast)
                   : "memory");
    } else if (memory_order == int(cuda::memory_order_acq_rel) ||
               memory_order == int(cuda::memory_order_seq_cst)) {
      asm volatile("atom.acq_rel.gpu.global.add.v2.bf16 {%0,%1}, [%2], {%3,%4};"
                   : "=h"(ret_val_x_cast), "=h"(ret_val_y_cast)
                   : "l"(ref_addr), "h"(add_val_x_cast), "h"(add_val_y_cast)
                   : "memory");
    }
    return __nv_bfloat162(*reinterpret_cast<__nv_bfloat16 *>(&ret_val_x_cast),
                          *reinterpret_cast<__nv_bfloat16 *>(&ret_val_y_cast));
  }
499
500
501
502
}
#endif

#if (defined(__CUDA_ARCH_LIST__) && (__CUDA_ARCH_LIST__ >= 900))
503
504
TL_DEVICE void AtomicAddx2(float *ref, float *val,
                           int memory_order = int(cuda::memory_order_relaxed)) {
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
  if (memory_order == int(cuda::memory_order_relaxed)) {
    atomicAdd(reinterpret_cast<float2 *>(ref),
              static_cast<float2>(*reinterpret_cast<float2 *>(val)));
  } else {
    float2 add_val = *reinterpret_cast<float2 *>(val);
    unsigned long long ref_addr = reinterpret_cast<unsigned long long>(ref);
    float2 ret_val;
    if (memory_order == int(cuda::memory_order_release) ||
        memory_order == int(cuda::memory_order_consume)) {
      asm volatile("atom.release.gpu.global.add.v2.f32 {%0,%1}, [%2], {%3,%4};"
                   : "=f"(ret_val.x), "=f"(ret_val.y)
                   : "l"(ref_addr), "f"(add_val.x), "f"(add_val.y)
                   : "memory");
    } else if (memory_order == int(cuda::memory_order_acquire)) {
      asm volatile("atom.acquire.gpu.global.add.v2.f32 {%0,%1}, [%2], {%3,%4};"
                   : "=f"(ret_val.x), "=f"(ret_val.y)
                   : "l"(ref_addr), "f"(add_val.x), "f"(add_val.y)
                   : "memory");
    } else if (memory_order == int(cuda::memory_order_acq_rel) ||
               memory_order == int(cuda::memory_order_seq_cst)) {
      asm volatile("atom.acq_rel.gpu.global.add.v2.f32 {%0,%1}, [%2], {%3,%4};"
                   : "=f"(ret_val.x), "=f"(ret_val.y)
                   : "l"(ref_addr), "f"(add_val.x), "f"(add_val.y)
                   : "memory");
    }
  }
531
532
}

533
534
535
TL_DEVICE float2
AtomicAddx2Ret(float *ref, float *val,
               int memory_order = int(cuda::memory_order_relaxed)) {
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
  if (memory_order == int(cuda::memory_order_relaxed)) {
    return atomicAdd(reinterpret_cast<float2 *>(ref),
                     static_cast<float2>(*reinterpret_cast<float2 *>(val)));
  } else {
    float2 add_val = *reinterpret_cast<float2 *>(val);
    unsigned long long ref_addr = reinterpret_cast<unsigned long long>(ref);
    float2 ret_val;
    if (memory_order == int(cuda::memory_order_release) ||
        memory_order == int(cuda::memory_order_consume)) {
      asm volatile("atom.release.gpu.global.add.v2.f32 {%0,%1}, [%2], {%3,%4};"
                   : "=f"(ret_val.x), "=f"(ret_val.y)
                   : "l"(ref_addr), "f"(add_val.x), "f"(add_val.y)
                   : "memory");
    } else if (memory_order == int(cuda::memory_order_acquire)) {
      asm volatile("atom.acquire.gpu.global.add.v2.f32 {%0,%1}, [%2], {%3,%4};"
                   : "=f"(ret_val.x), "=f"(ret_val.y)
                   : "l"(ref_addr), "f"(add_val.x), "f"(add_val.y)
                   : "memory");
    } else if (memory_order == int(cuda::memory_order_acq_rel) ||
               memory_order == int(cuda::memory_order_seq_cst)) {
      asm volatile("atom.acq_rel.gpu.global.add.v2.f32 {%0,%1}, [%2], {%3,%4};"
                   : "=f"(ret_val.x), "=f"(ret_val.y)
                   : "l"(ref_addr), "f"(add_val.x), "f"(add_val.y)
                   : "memory");
    }
    return ret_val;
  }
563
564
}

565
566
TL_DEVICE void AtomicAddx4(float *ref, float *val,
                           int memory_order = int(cuda::memory_order_relaxed)) {
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
  if (memory_order == int(cuda::memory_order_relaxed)) {
    atomicAdd(reinterpret_cast<float4 *>(ref),
              static_cast<float4>(*reinterpret_cast<float4 *>(val)));
  } else {
    // Since atomicAdd does not support memory order, atomic_ref does not
    // support vectorized atomic operation we can only inline ptx code here
    // Note: Vectorized atomic operations only support global space
    float4 add_val = *reinterpret_cast<float4 *>(val);
    unsigned long long ref_addr = reinterpret_cast<unsigned long long>(ref);
    float4 ret_val;
    if (memory_order == int(cuda::memory_order_release) ||
        memory_order == int(cuda::memory_order_consume)) {
      asm volatile("atom.release.gpu.global.add.v4.f32 {%0,%1,%2,%3}, [%4], "
                   "{%5,%6,%7,%8};"
                   : "=f"(ret_val.x), "=f"(ret_val.y), "=f"(ret_val.z),
                     "=f"(ret_val.w)
                   : "l"(ref_addr), "f"(add_val.x), "f"(add_val.y),
                     "f"(add_val.z), "f"(add_val.w)
                   : "memory");
    } else if (memory_order == int(cuda::memory_order_acquire)) {
      asm volatile("atom.acquire.gpu.global.add.v4.f32 {%0,%1,%2,%3}, [%4], "
                   "{%5,%6,%7,%8};"
                   : "=f"(ret_val.x), "=f"(ret_val.y), "=f"(ret_val.z),
                     "=f"(ret_val.w)
                   : "l"(ref_addr), "f"(add_val.x), "f"(add_val.y),
                     "f"(add_val.z), "f"(add_val.w)
                   : "memory");
    } else if (memory_order == int(cuda::memory_order_acq_rel) ||
               memory_order == int(cuda::memory_order_seq_cst)) {
      asm volatile("atom.acq_rel.gpu.global.add.v4.f32 {%0,%1,%2,%3}, [%4], "
                   "{%5,%6,%7,%8};"
                   : "=f"(ret_val.x), "=f"(ret_val.y), "=f"(ret_val.z),
                     "=f"(ret_val.w)
                   : "l"(ref_addr), "f"(add_val.x), "f"(add_val.y),
                     "f"(add_val.z), "f"(add_val.w)
                   : "memory");
    }
  }
605
606
}

607
608
609
TL_DEVICE float4
AtomicAddx4Ret(float *ref, float *val,
               int memory_order = int(cuda::memory_order_relaxed)) {
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
  if (memory_order == int(cuda::memory_order_relaxed)) {
    return atomicAdd(reinterpret_cast<float4 *>(ref),
                     static_cast<float4>(*reinterpret_cast<float4 *>(val)));
  } else {
    float4 add_val = *reinterpret_cast<float4 *>(val);
    unsigned long long ref_addr = reinterpret_cast<unsigned long long>(ref);
    float4 ret_val;
    if (memory_order == int(cuda::memory_order_release) ||
        memory_order == int(cuda::memory_order_consume)) {
      asm volatile("atom.global.gpu.release.add.v4.f32 {%0,%1,%2,%3}, [%4], "
                   "{%5,%6,%7,%8};"
                   : "=f"(ret_val.x), "=f"(ret_val.y), "=f"(ret_val.z),
                     "=f"(ret_val.w)
                   : "l"(ref_addr), "f"(add_val.x), "f"(add_val.y),
                     "f"(add_val.z), "f"(add_val.w)
                   : "memory");
    } else if (memory_order == int(cuda::memory_order_acquire)) {
      asm volatile("atom.global.gpu.acquire.add.v4.f32 {%0,%1,%2,%3}, [%4], "
                   "{%5,%6,%7,%8};"
                   : "=f"(ret_val.x), "=f"(ret_val.y), "=f"(ret_val.z),
                     "=f"(ret_val.w)
                   : "l"(ref_addr), "f"(add_val.x), "f"(add_val.y),
                     "f"(add_val.z), "f"(add_val.w)
                   : "memory");
    } else if (memory_order == int(cuda::memory_order_acq_rel) ||
               memory_order == int(cuda::memory_order_seq_cst)) {
      asm volatile("atom.global.gpu.acq_rel.add.v4.f32 {%0,%1,%2,%3}, [%4], "
                   "{%5,%6,%7,%8};"
                   : "=f"(ret_val.x), "=f"(ret_val.y), "=f"(ret_val.z),
                     "=f"(ret_val.w)
                   : "l"(ref_addr), "f"(add_val.x), "f"(add_val.y),
                     "f"(add_val.z), "f"(add_val.w)
                   : "memory");
    }
    return ret_val;
  }
646
647
648
649
}
#endif

template <typename T> TL_DEVICE T AtomicLoad(T &ref, int memory_order) {
650
#if CUDART_VERSION >= 11080
651
652
  cuda::atomic_ref<T, cuda::thread_scope_device> aref(ref);
  return aref.load(cuda::memory_order(memory_order));
653
654
655
#else
  TL_NOT_IMPLEMENTED();
#endif
656
657
658
659
660
}

template <typename T1, typename T2>
TL_DEVICE void AtomicStore(T1 &ref, T2 value, int memory_order) {
  using NT1 = typename normalize_atomic_type<T1>::type;
661
#if CUDART_VERSION >= 11080
662
663
  cuda::atomic_ref<NT1, cuda::thread_scope_device> aref(ref);
  aref.store(cuda_cast<NT1>(value), cuda::memory_order(memory_order));
664
665
666
#else
  TL_NOT_IMPLEMENTED();
#endif
667
}