atomic.h 20.7 KB
Newer Older
1
2
3
4
5
6
7
#pragma once

#ifndef __CUDACC_RTC__
#include <cuda_runtime.h>
#endif

#include <cuda/atomic>
8
#include <cuda_fp16.h>
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#include <cutlass/numeric_types.h>

using cutlass::bfloat16_t;
using cutlass::half_t;

#define TL_DEVICE __forceinline__ __device__

template <typename T> struct normalize_atomic_type {
  using type = T;
};

template <> struct normalize_atomic_type<half_t> {
  using type = half;
};

#if (defined(__CUDA_ARCH_LIST__) && (__CUDA_ARCH_LIST__ > 750))
template <> struct normalize_atomic_type<bfloat16_t> {
  using type = __nv_bfloat16;
};
#endif

template <typename T1, typename T2> TL_DEVICE T1 cuda_cast(T2 val) {
  return T1(val);
}

template <> TL_DEVICE half cuda_cast<half, float>(float val) {
  return __float2half(val);
}

#if (defined(__CUDA_ARCH_LIST__) && (__CUDA_ARCH_LIST__ > 750))
template <> TL_DEVICE __nv_bfloat16 cuda_cast<__nv_bfloat16, float>(float val) {
  return __float2bfloat16(val);
}
#endif

template <typename T1, typename T2>
TL_DEVICE void AtomicMax(T1 &ref, T2 val,
                         int memory_order = int(cuda::memory_order_relaxed)) {
  using NT1 = typename normalize_atomic_type<T1>::type;
  T1 *address = &ref;
49
50
51
  if constexpr ((std::is_same_v<NT1, half> ||
                 std::is_same_v<NT1, __nv_bfloat16>) &&
                memory_order == int(cuda::memory_order_relaxed)) {
52
53
54
55
56
57
58
59
60
61
62
63
    atomicMax(reinterpret_cast<NT1 *>(address), static_cast<NT1>(val));
  } else {
    cuda::atomic_ref<NT1, cuda::thread_scope_device> aref(*address);
    aref.fetch_max(cuda_cast<NT1>(val), cuda::memory_order(memory_order));
  }
}

template <typename T1, typename T2>
TL_DEVICE T1 AtomicMaxRet(T1 &ref, T2 val,
                          int memory_order = int(cuda::memory_order_relaxed)) {
  using NT1 = typename normalize_atomic_type<T1>::type;
  T1 *address = &ref;
64
65
66
  if constexpr ((std::is_same_v<NT1, half> ||
                 std::is_same_v<NT1, __nv_bfloat16>) &&
                memory_order == int(cuda::memory_order_relaxed)) {
67
68
69
70
71
72
73
74
75
76
77
78
79
80
    return static_cast<T1>(
        atomicMax(reinterpret_cast<NT1 *>(address), static_cast<NT1>(val)));
  } else {
    cuda::atomic_ref<NT1, cuda::thread_scope_device> aref(*address);
    return static_cast<T1>(
        aref.fetch_max(cuda_cast<NT1>(val), cuda::memory_order(memory_order)));
  }
}

template <typename T1, typename T2>
TL_DEVICE void AtomicMin(T1 &ref, T2 val,
                         int memory_order = int(cuda::memory_order_relaxed)) {
  using NT1 = typename normalize_atomic_type<T1>::type;
  T1 *address = &ref;
81
82
83
  if constexpr ((std::is_same_v<NT1, half> ||
                 std::is_same_v<NT1, __nv_bfloat16>) &&
                memory_order == int(cuda::memory_order_relaxed)) {
84
85
86
87
88
89
90
91
92
93
94
95
    atomicMin(reinterpret_cast<NT1 *>(address), static_cast<NT1>(val));
  } else {
    cuda::atomic_ref<NT1, cuda::thread_scope_device> aref(*address);
    aref.fetch_min(cuda_cast<NT1>(val), cuda::memory_order(memory_order));
  }
}

template <typename T1, typename T2>
TL_DEVICE T1 AtomicMinRet(T1 &ref, T2 val,
                          int memory_order = int(cuda::memory_order_relaxed)) {
  using NT1 = typename normalize_atomic_type<T1>::type;
  T1 *address = &ref;
96
97
98
  if constexpr ((std::is_same_v<NT1, half> ||
                 std::is_same_v<NT1, __nv_bfloat16>) &&
                memory_order == int(cuda::memory_order_relaxed)) {
99
100
101
102
103
104
105
106
107
108
109
110
111
112
    return static_cast<T1>(
        atomicMin(reinterpret_cast<NT1 *>(address), static_cast<NT1>(val)));
  } else {
    cuda::atomic_ref<NT1, cuda::thread_scope_device> aref(*address);
    return static_cast<T1>(
        aref.fetch_min(cuda_cast<NT1>(val), cuda::memory_order(memory_order)));
  }
}

template <typename T1, typename T2>
TL_DEVICE void AtomicAdd(T1 &ref, T2 val,
                         int memory_order = int(cuda::memory_order_relaxed)) {
  using NT1 = typename normalize_atomic_type<T1>::type;
  T1 *address = &ref;
113
  if constexpr ((std::is_same_v<NT1, half> ||
114
115
                 std::is_same_v<NT1, __nv_bfloat16>) &&
                memory_order == int(cuda::memory_order_relaxed)) {
116
117
118
119
120
121
122
123
124
125
126
127
    atomicAdd(reinterpret_cast<NT1 *>(address), static_cast<NT1>(val));
  } else {
    cuda::atomic_ref<NT1, cuda::thread_scope_device> aref(*address);
    aref.fetch_add(cuda_cast<NT1>(val), cuda::memory_order(memory_order));
  }
}

template <typename T1, typename T2>
TL_DEVICE T1 AtomicAddRet(T1 &ref, T2 val,
                          int memory_order = int(cuda::memory_order_relaxed)) {
  using NT1 = typename normalize_atomic_type<T1>::type;
  T1 *address = &ref;
128
  if constexpr ((std::is_same_v<NT1, half> ||
129
130
                 std::is_same_v<NT1, __nv_bfloat16>) &&
                memory_order == int(cuda::memory_order_relaxed)) {
131
132
133
134
135
136
137
138
139
    return static_cast<T1>(
        atomicAdd(reinterpret_cast<NT1 *>(address), static_cast<NT1>(val)));
  } else {
    cuda::atomic_ref<NT1, cuda::thread_scope_device> aref(*address);
    return static_cast<T1>(
        aref.fetch_add(cuda_cast<NT1>(val), cuda::memory_order(memory_order)));
  }
}

140
141
142
// TODO add memory_order for vectorized atomic add
TL_DEVICE void AtomicAddx2(half_t *ref, half_t *val,
                           int memory_order = int(cuda::memory_order_relaxed)) {
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
  if (memory_order == int(cuda::memory_order_relaxed)) {
    atomicAdd(reinterpret_cast<half2 *>(ref),
              static_cast<half2>(*reinterpret_cast<half2 *>(val)));
  } else {
    // Since atomicAdd does not support memory order, atomic_ref does not
    // support vectorized atomic operation we can only inline ptx code here
    // Note: Vectorized atomic operations only support global space
    // Note: for 16-bit value, we need to reinterpret_cast the value to unsigned
    // short and use "h" register in assembly
    __half2 add_val = *reinterpret_cast<__half2 *>(val);
    unsigned short add_val_x_cast =
        *reinterpret_cast<unsigned short *>(&add_val.x);
    unsigned short add_val_y_cast =
        *reinterpret_cast<unsigned short *>(&add_val.y);
    unsigned long long ref_addr = reinterpret_cast<unsigned long long>(ref);
    __half ret_val_x, ret_val_y;
    unsigned short ret_val_x_cast =
        *reinterpret_cast<unsigned short *>(&ret_val_x);
    unsigned short ret_val_y_cast =
        *reinterpret_cast<unsigned short *>(&ret_val_y);
    if (memory_order == int(cuda::memory_order_release) ||
        memory_order == int(cuda::memory_order_consume)) {
      asm volatile(
          "atom.release.gpu.global.add.noftz.v2.f16 {%0,%1}, [%2], {%3,%4};"
          : "=h"(ret_val_x_cast), "=h"(ret_val_y_cast)
          : "l"(ref_addr), "h"(add_val_x_cast), "h"(add_val_y_cast)
          : "memory");
    } else if (memory_order == int(cuda::memory_order_acquire)) {
      asm volatile(
          "atom.acquire.gpu.global.add.noftz.v2.f16 {%0,%1}, [%2], {%3,%4};"
          : "=h"(ret_val_x_cast), "=h"(ret_val_y_cast)
          : "l"(ref_addr), "h"(add_val_x_cast), "h"(add_val_y_cast)
          : "memory");
    } else if (memory_order == int(cuda::memory_order_acq_rel) ||
               memory_order == int(cuda::memory_order_seq_cst)) {
      asm volatile(
          "atom.acq_rel.gpu.global.add.noftz.v2.f16 {%0,%1}, [%2], {%3,%4};"
          : "=h"(ret_val_x_cast), "=h"(ret_val_y_cast)
          : "l"(ref_addr), "h"(add_val_x_cast), "h"(add_val_y_cast)
          : "memory");
    }
  }
185
186
}

187
188
189
TL_DEVICE half2
AtomicAddx2Ret(half_t *ref, half_t *val,
               int memory_order = int(cuda::memory_order_relaxed)) {
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
  if (memory_order == int(cuda::memory_order_relaxed)) {
    return atomicAdd(reinterpret_cast<half2 *>(ref),
                     static_cast<half2>(*reinterpret_cast<half2 *>(val)));
  } else {
    __half2 add_val = *reinterpret_cast<__half2 *>(val);
    unsigned short add_val_x_cast =
        *reinterpret_cast<unsigned short *>(&add_val.x);
    unsigned short add_val_y_cast =
        *reinterpret_cast<unsigned short *>(&add_val.y);
    unsigned long long ref_addr = reinterpret_cast<unsigned long long>(ref);
    __half ret_val_x, ret_val_y;
    unsigned short ret_val_x_cast =
        *reinterpret_cast<unsigned short *>(&ret_val_x);
    unsigned short ret_val_y_cast =
        *reinterpret_cast<unsigned short *>(&ret_val_y);
    if (memory_order == int(cuda::memory_order_release) ||
        memory_order == int(cuda::memory_order_consume)) {
      asm volatile(
          "atom.release.gpu.global.add.noftz.v2.f16 {%0,%1}, [%2], {%3,%4};"
          : "=h"(ret_val_x_cast), "=h"(ret_val_y_cast)
          : "l"(ref_addr), "h"(add_val_x_cast), "h"(add_val_y_cast)
          : "memory");
    } else if (memory_order == int(cuda::memory_order_acquire)) {
      asm volatile(
          "atom.acquire.gpu.global.add.noftz.v2.f16 {%0,%1}, [%2], {%3,%4};"
          : "=h"(ret_val_x_cast), "=h"(ret_val_y_cast)
          : "l"(ref_addr), "h"(add_val_x_cast), "h"(add_val_y_cast)
          : "memory");
    } else if (memory_order == int(cuda::memory_order_acq_rel) ||
               memory_order == int(cuda::memory_order_seq_cst)) {
      asm volatile(
          "atom.acq_rel.gpu.global.add.noftz.v2.f16 {%0,%1}, [%2], {%3,%4};"
          : "=h"(ret_val_x_cast), "=h"(ret_val_y_cast)
          : "l"(ref_addr), "h"(add_val_x_cast), "h"(add_val_y_cast)
          : "memory");
    }
    return half2(*reinterpret_cast<__half *>(&ret_val_x_cast),
                 *reinterpret_cast<__half *>(&ret_val_y_cast));
  }
229
230
231
}

#if (defined(__CUDA_ARCH_LIST__) && (__CUDA_ARCH_LIST__ > 750))
232
233
TL_DEVICE void AtomicAddx2(bfloat16_t *ref, bfloat16_t *val,
                           int memory_order = int(cuda::memory_order_relaxed)) {
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
  if (memory_order == int(cuda::memory_order_relaxed)) {
    atomicAdd(
        reinterpret_cast<__nv_bfloat162 *>(ref),
        static_cast<__nv_bfloat162>(*reinterpret_cast<__nv_bfloat162 *>(val)));
  } else {
    __nv_bfloat162 add_val = *reinterpret_cast<__nv_bfloat162 *>(val);
    unsigned short add_val_x_cast =
        *reinterpret_cast<unsigned short *>(&add_val.x);
    unsigned short add_val_y_cast =
        *reinterpret_cast<unsigned short *>(&add_val.y);
    unsigned long long ref_addr = reinterpret_cast<unsigned long long>(ref);
    __nv_bfloat162 ret_val;
    unsigned short ret_val_x_cast =
        *reinterpret_cast<unsigned short *>(&ret_val.x);
    unsigned short ret_val_y_cast =
        *reinterpret_cast<unsigned short *>(&ret_val.y);
    if (memory_order == int(cuda::memory_order_release) ||
        memory_order == int(cuda::memory_order_consume)) {
      asm volatile("atom.release.gpu.global.add.v2.bf16 {%0,%1}, [%2], {%3,%4};"
                   : "=h"(ret_val_x_cast), "=h"(ret_val_y_cast)
                   : "l"(ref_addr), "h"(add_val_x_cast), "h"(add_val_y_cast)
                   : "memory");
    } else if (memory_order == int(cuda::memory_order_acquire)) {
      asm volatile("atom.acquire.gpu.global.add.v2.bf16 {%0,%1}, [%2], {%3,%4};"
                   : "=h"(ret_val_x_cast), "=h"(ret_val_y_cast)
                   : "l"(ref_addr), "h"(add_val_x_cast), "h"(add_val_y_cast)
                   : "memory");
    } else if (memory_order == int(cuda::memory_order_acq_rel) ||
               memory_order == int(cuda::memory_order_seq_cst)) {
      asm volatile("atom.acq_rel.gpu.global.add.v2.bf16 {%0,%1}, [%2], {%3,%4};"
                   : "=h"(ret_val_x_cast), "=h"(ret_val_y_cast)
                   : "l"(ref_addr), "h"(add_val_x_cast), "h"(add_val_y_cast)
                   : "memory");
    }
  }
269
270
}

271
272
273
TL_DEVICE __nv_bfloat162
AtomicAddx2Ret(bfloat16_t *ref, bfloat16_t *val,
               int memory_order = int(cuda::memory_order_relaxed)) {
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
  if (memory_order == int(cuda::memory_order_relaxed)) {
    return atomicAdd(
        reinterpret_cast<__nv_bfloat162 *>(ref),
        static_cast<__nv_bfloat162>(*reinterpret_cast<__nv_bfloat162 *>(val)));
  } else {
    __nv_bfloat162 add_val = *reinterpret_cast<__nv_bfloat162 *>(val);
    unsigned short add_val_x_cast =
        *reinterpret_cast<unsigned short *>(&add_val.x);
    unsigned short add_val_y_cast =
        *reinterpret_cast<unsigned short *>(&add_val.y);
    unsigned long long ref_addr = reinterpret_cast<unsigned long long>(ref);
    __nv_bfloat162 ret_val;
    unsigned short ret_val_x_cast =
        *reinterpret_cast<unsigned short *>(&ret_val.x);
    unsigned short ret_val_y_cast =
        *reinterpret_cast<unsigned short *>(&ret_val.y);
    if (memory_order == int(cuda::memory_order_release) ||
        memory_order == int(cuda::memory_order_consume)) {
      asm volatile("atom.release.gpu.global.add.v2.bf16 {%0,%1}, [%2], {%3,%4};"
                   : "=h"(ret_val_x_cast), "=h"(ret_val_y_cast)
                   : "l"(ref_addr), "h"(add_val_x_cast), "h"(add_val_y_cast)
                   : "memory");
    } else if (memory_order == int(cuda::memory_order_acquire)) {
      asm volatile("atom.acquire.gpu.global.add.v2.bf16 {%0,%1}, [%2], {%3,%4};"
                   : "=h"(ret_val_x_cast), "=h"(ret_val_y_cast)
                   : "l"(ref_addr), "h"(add_val_x_cast), "h"(add_val_y_cast)
                   : "memory");
    } else if (memory_order == int(cuda::memory_order_acq_rel) ||
               memory_order == int(cuda::memory_order_seq_cst)) {
      asm volatile("atom.acq_rel.gpu.global.add.v2.bf16 {%0,%1}, [%2], {%3,%4};"
                   : "=h"(ret_val_x_cast), "=h"(ret_val_y_cast)
                   : "l"(ref_addr), "h"(add_val_x_cast), "h"(add_val_y_cast)
                   : "memory");
    }
    return __nv_bfloat162(*reinterpret_cast<__nv_bfloat16 *>(&ret_val_x_cast),
                          *reinterpret_cast<__nv_bfloat16 *>(&ret_val_y_cast));
  }
311
312
313
314
}
#endif

#if (defined(__CUDA_ARCH_LIST__) && (__CUDA_ARCH_LIST__ >= 900))
315
316
TL_DEVICE void AtomicAddx2(float *ref, float *val,
                           int memory_order = int(cuda::memory_order_relaxed)) {
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
  if (memory_order == int(cuda::memory_order_relaxed)) {
    atomicAdd(reinterpret_cast<float2 *>(ref),
              static_cast<float2>(*reinterpret_cast<float2 *>(val)));
  } else {
    float2 add_val = *reinterpret_cast<float2 *>(val);
    unsigned long long ref_addr = reinterpret_cast<unsigned long long>(ref);
    float2 ret_val;
    if (memory_order == int(cuda::memory_order_release) ||
        memory_order == int(cuda::memory_order_consume)) {
      asm volatile("atom.release.gpu.global.add.v2.f32 {%0,%1}, [%2], {%3,%4};"
                   : "=f"(ret_val.x), "=f"(ret_val.y)
                   : "l"(ref_addr), "f"(add_val.x), "f"(add_val.y)
                   : "memory");
    } else if (memory_order == int(cuda::memory_order_acquire)) {
      asm volatile("atom.acquire.gpu.global.add.v2.f32 {%0,%1}, [%2], {%3,%4};"
                   : "=f"(ret_val.x), "=f"(ret_val.y)
                   : "l"(ref_addr), "f"(add_val.x), "f"(add_val.y)
                   : "memory");
    } else if (memory_order == int(cuda::memory_order_acq_rel) ||
               memory_order == int(cuda::memory_order_seq_cst)) {
      asm volatile("atom.acq_rel.gpu.global.add.v2.f32 {%0,%1}, [%2], {%3,%4};"
                   : "=f"(ret_val.x), "=f"(ret_val.y)
                   : "l"(ref_addr), "f"(add_val.x), "f"(add_val.y)
                   : "memory");
    }
  }
343
344
}

345
346
347
TL_DEVICE float2
AtomicAddx2Ret(float *ref, float *val,
               int memory_order = int(cuda::memory_order_relaxed)) {
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
  if (memory_order == int(cuda::memory_order_relaxed)) {
    return atomicAdd(reinterpret_cast<float2 *>(ref),
                     static_cast<float2>(*reinterpret_cast<float2 *>(val)));
  } else {
    float2 add_val = *reinterpret_cast<float2 *>(val);
    unsigned long long ref_addr = reinterpret_cast<unsigned long long>(ref);
    float2 ret_val;
    if (memory_order == int(cuda::memory_order_release) ||
        memory_order == int(cuda::memory_order_consume)) {
      asm volatile("atom.release.gpu.global.add.v2.f32 {%0,%1}, [%2], {%3,%4};"
                   : "=f"(ret_val.x), "=f"(ret_val.y)
                   : "l"(ref_addr), "f"(add_val.x), "f"(add_val.y)
                   : "memory");
    } else if (memory_order == int(cuda::memory_order_acquire)) {
      asm volatile("atom.acquire.gpu.global.add.v2.f32 {%0,%1}, [%2], {%3,%4};"
                   : "=f"(ret_val.x), "=f"(ret_val.y)
                   : "l"(ref_addr), "f"(add_val.x), "f"(add_val.y)
                   : "memory");
    } else if (memory_order == int(cuda::memory_order_acq_rel) ||
               memory_order == int(cuda::memory_order_seq_cst)) {
      asm volatile("atom.acq_rel.gpu.global.add.v2.f32 {%0,%1}, [%2], {%3,%4};"
                   : "=f"(ret_val.x), "=f"(ret_val.y)
                   : "l"(ref_addr), "f"(add_val.x), "f"(add_val.y)
                   : "memory");
    }
    return ret_val;
  }
375
376
}

377
378
TL_DEVICE void AtomicAddx4(float *ref, float *val,
                           int memory_order = int(cuda::memory_order_relaxed)) {
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
  if (memory_order == int(cuda::memory_order_relaxed)) {
    atomicAdd(reinterpret_cast<float4 *>(ref),
              static_cast<float4>(*reinterpret_cast<float4 *>(val)));
  } else {
    // Since atomicAdd does not support memory order, atomic_ref does not
    // support vectorized atomic operation we can only inline ptx code here
    // Note: Vectorized atomic operations only support global space
    float4 add_val = *reinterpret_cast<float4 *>(val);
    unsigned long long ref_addr = reinterpret_cast<unsigned long long>(ref);
    float4 ret_val;
    if (memory_order == int(cuda::memory_order_release) ||
        memory_order == int(cuda::memory_order_consume)) {
      asm volatile("atom.release.gpu.global.add.v4.f32 {%0,%1,%2,%3}, [%4], "
                   "{%5,%6,%7,%8};"
                   : "=f"(ret_val.x), "=f"(ret_val.y), "=f"(ret_val.z),
                     "=f"(ret_val.w)
                   : "l"(ref_addr), "f"(add_val.x), "f"(add_val.y),
                     "f"(add_val.z), "f"(add_val.w)
                   : "memory");
    } else if (memory_order == int(cuda::memory_order_acquire)) {
      asm volatile("atom.acquire.gpu.global.add.v4.f32 {%0,%1,%2,%3}, [%4], "
                   "{%5,%6,%7,%8};"
                   : "=f"(ret_val.x), "=f"(ret_val.y), "=f"(ret_val.z),
                     "=f"(ret_val.w)
                   : "l"(ref_addr), "f"(add_val.x), "f"(add_val.y),
                     "f"(add_val.z), "f"(add_val.w)
                   : "memory");
    } else if (memory_order == int(cuda::memory_order_acq_rel) ||
               memory_order == int(cuda::memory_order_seq_cst)) {
      asm volatile("atom.acq_rel.gpu.global.add.v4.f32 {%0,%1,%2,%3}, [%4], "
                   "{%5,%6,%7,%8};"
                   : "=f"(ret_val.x), "=f"(ret_val.y), "=f"(ret_val.z),
                     "=f"(ret_val.w)
                   : "l"(ref_addr), "f"(add_val.x), "f"(add_val.y),
                     "f"(add_val.z), "f"(add_val.w)
                   : "memory");
    }
  }
417
418
}

419
420
421
TL_DEVICE float4
AtomicAddx4Ret(float *ref, float *val,
               int memory_order = int(cuda::memory_order_relaxed)) {
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
  if (memory_order == int(cuda::memory_order_relaxed)) {
    return atomicAdd(reinterpret_cast<float4 *>(ref),
                     static_cast<float4>(*reinterpret_cast<float4 *>(val)));
  } else {
    float4 add_val = *reinterpret_cast<float4 *>(val);
    unsigned long long ref_addr = reinterpret_cast<unsigned long long>(ref);
    float4 ret_val;
    if (memory_order == int(cuda::memory_order_release) ||
        memory_order == int(cuda::memory_order_consume)) {
      asm volatile("atom.global.gpu.release.add.v4.f32 {%0,%1,%2,%3}, [%4], "
                   "{%5,%6,%7,%8};"
                   : "=f"(ret_val.x), "=f"(ret_val.y), "=f"(ret_val.z),
                     "=f"(ret_val.w)
                   : "l"(ref_addr), "f"(add_val.x), "f"(add_val.y),
                     "f"(add_val.z), "f"(add_val.w)
                   : "memory");
    } else if (memory_order == int(cuda::memory_order_acquire)) {
      asm volatile("atom.global.gpu.acquire.add.v4.f32 {%0,%1,%2,%3}, [%4], "
                   "{%5,%6,%7,%8};"
                   : "=f"(ret_val.x), "=f"(ret_val.y), "=f"(ret_val.z),
                     "=f"(ret_val.w)
                   : "l"(ref_addr), "f"(add_val.x), "f"(add_val.y),
                     "f"(add_val.z), "f"(add_val.w)
                   : "memory");
    } else if (memory_order == int(cuda::memory_order_acq_rel) ||
               memory_order == int(cuda::memory_order_seq_cst)) {
      asm volatile("atom.global.gpu.acq_rel.add.v4.f32 {%0,%1,%2,%3}, [%4], "
                   "{%5,%6,%7,%8};"
                   : "=f"(ret_val.x), "=f"(ret_val.y), "=f"(ret_val.z),
                     "=f"(ret_val.w)
                   : "l"(ref_addr), "f"(add_val.x), "f"(add_val.y),
                     "f"(add_val.z), "f"(add_val.w)
                   : "memory");
    }
    return ret_val;
  }
458
459
460
461
462
463
464
465
466
467
468
469
470
471
}
#endif

template <typename T> TL_DEVICE T AtomicLoad(T &ref, int memory_order) {
  cuda::atomic_ref<T, cuda::thread_scope_device> aref(ref);
  return aref.load(cuda::memory_order(memory_order));
}

template <typename T1, typename T2>
TL_DEVICE void AtomicStore(T1 &ref, T2 value, int memory_order) {
  using NT1 = typename normalize_atomic_type<T1>::type;
  cuda::atomic_ref<NT1, cuda::thread_scope_device> aref(ref);
  aref.store(cuda_cast<NT1>(value), cuda::memory_order(memory_order));
}