example_amd_flash_attn_fwd.py 9.11 KB
Newer Older
1
2
3
4
import torch
import torch.nn.functional as F
import tilelang
import tilelang.language as T
5
from tilelang.primitives.gemm.base import GemmWarpPolicy
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import itertools
import argparse
from functools import partial


def ref_program(Q, K, V, is_causal, groups=1):
    assert Q.size(
        2) == K.size(2) * groups, f"Q heads {Q.size(2)} K heads {K.size(2)} groups {groups}"
    assert Q.size(
        2) == V.size(2) * groups, f"Q heads {Q.size(2)} V heads {V.size(2)} groups {groups}"
    dim = Q.size(-1)
    K = K.repeat_interleave(groups, dim=2)
    V = V.repeat_interleave(groups, dim=2)
    scores = torch.einsum('bqhd,bkhd->bhqk', Q, K)
    scores = scores / torch.sqrt(torch.tensor(dim, dtype=scores.dtype))
    if is_causal:
        seq_len = Q.size(1)
        mask = torch.tril(torch.ones(seq_len, seq_len, device=scores.device))
        mask = mask.unsqueeze(0).unsqueeze(0)
        scores = scores.masked_fill(mask == 0, float('-inf'))
    attention_weights = F.softmax(scores, dim=-1)
    output = torch.einsum('bhqk,bkhd->bqhd', attention_weights, V)
    return output


def get_configs():
    """Generates configurations for the autotuner, tailored for FA-2 style parallelism."""
33
34
    block_M = [32, 64, 128, 256]
    block_N = [32, 64, 128, 256]
35
36
    threads = [128, 256, 512]
    num_split_q = [64, 128, 256]
alex_xiao's avatar
alex_xiao committed
37
    num_stages = [0, 1]
38
39
    enable_rasterization = [True]
    k_pack = [2]
40
    panel_size = [7, 8]
41
42
    qk_coalesced_width = [8]
    v_coalesced_width = [4]
43
44
45

    valid_configs = []

46
47
48
49
50
    for m, n, s, t, stages, r, k, p, qkw, vw in itertools.product(block_M, block_N, num_split_q,
                                                                  threads, num_stages,
                                                                  enable_rasterization, k_pack,
                                                                  panel_size, qk_coalesced_width,
                                                                  v_coalesced_width):
51
52
53
54
55
56
57
        valid_configs.append({
            "block_M": m,
            "block_N": n,
            "num_split_q": s,
            "threads": t,
            "num_stages": stages,
            "enable_rasterization": r,
58
59
60
61
            "k_pack": k,
            "panel_size": p,
            "qk_coalesced_width": qkw,
            "v_coalesced_width": vw,
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
        })
    return valid_configs


@tilelang.autotune(configs=get_configs(), cache_input_tensors=True)
@tilelang.jit(out_idx=[3])
def fast_flashattn(
    batch,
    heads,
    seq_len,
    dim,
    is_causal,
    groups,
    block_M: int,
    block_N: int,
    num_split_q: int,
    threads: int,
    num_stages: int,
    enable_rasterization: bool,
    k_pack: int,
82
83
84
    panel_size: int,
    qk_coalesced_width: int,
    v_coalesced_width: int,
85
):
alex_xiao's avatar
alex_xiao committed
86
    scale = (1.0 / dim)**0.5
87
88
89
90
91
92
    head_kv = heads // groups
    q_shape = [batch, seq_len, heads, dim]
    kv_shape = [batch, seq_len, head_kv, dim]
    dtype = "float16"
    accum_dtype = "float"

93
94
    vec_size = qk_coalesced_width
    v_vec_size = v_coalesced_width
95
96
97
98
99
100
101
102
103

    @T.prim_func
    def main(
            Q: T.Tensor(q_shape, dtype),
            K: T.Tensor(kv_shape, dtype),
            V: T.Tensor(kv_shape, dtype),
            Output: T.Tensor(q_shape, dtype),
    ):
        with T.Kernel(num_split_q, batch * heads, threads=threads) as (b_split, byz_combined):
104
            T.use_swizzle(panel_size, enable=enable_rasterization)
105
106
107
108
109
110
111

            bz = byz_combined // heads
            by = byz_combined % heads

            num_q_blocks = T.ceildiv(seq_len, block_M)

            bx = T.alloc_var("int32")
112
            bx = b_split
113

114
            with T.While(bx < num_q_blocks):
115
116
117
118
119
120
121
                acc_o = T.alloc_fragment([block_M, dim], accum_dtype)
                m_i = T.alloc_fragment([block_M], accum_dtype)
                l_i = T.alloc_fragment([block_M], accum_dtype)
                T.fill(acc_o, 0)
                T.fill(m_i, -T.infinity(accum_dtype))
                T.fill(l_i, 0)

122
                current_bx = bx
123
124
125
126
127
                q_block_offset = current_bx * block_M

                Q_shared = T.alloc_shared([block_M, dim], dtype)
                K_shared = T.alloc_shared([block_N, dim], dtype)
                V_shared = T.alloc_shared([block_N, dim], dtype)
128
129
                # Use register fragment for P instead of shared memory to reduce LDS usage
                acc_s_cast = T.alloc_fragment([block_M, block_N], dtype)
130
131
132
133
134
135
136
137
138
139
140
141
142

                acc_s = T.alloc_fragment([block_M, block_N], accum_dtype)
                m_prev = T.alloc_fragment([block_M], accum_dtype)
                scale_factor = T.alloc_fragment([block_M], accum_dtype)

                T.copy(
                    Q[bz, q_block_offset:q_block_offset + block_M, by, :],
                    Q_shared,
                    coalesced_width=vec_size)

                loop_end_k = T.ceildiv(q_block_offset + block_M,
                                       block_N) if is_causal else T.ceildiv(seq_len, block_N)

143
144
                row_sum = T.alloc_fragment([block_M], accum_dtype)

145
146
147
148
149
150
151
152
153
154
155
156
157
158
                for k in T.Pipelined(loop_end_k, num_stages=num_stages):
                    kv_idx = k * block_N

                    T.copy(
                        K[bz, kv_idx:kv_idx + block_N, by // groups, :],
                        K_shared,
                        coalesced_width=vec_size)
                    T.copy(
                        V[bz, kv_idx:kv_idx + block_N, by // groups, :],
                        V_shared,
                        coalesced_width=v_vec_size)

                    if is_causal:
                        for i, j in T.Parallel(block_M, block_N):
159
160
161
162
163
164
165
166
167
168
169
170
                            acc_s[i, j] = T.if_then_else(q_block_offset + i >= kv_idx + j, 0,
                                                         -T.infinity(acc_s.dtype))
                    else:
                        T.clear(acc_s)
                    T.gemm(
                        Q_shared,
                        K_shared,
                        acc_s,
                        transpose_B=True,
                        k_pack=k_pack,
                        policy=GemmWarpPolicy.FullRow,
                    )
171
172
173
174
175

                    T.copy(m_i, m_prev)
                    T.reduce_max(acc_s, m_i, dim=1, clear=False)

                    for i in T.Parallel(block_M):
alex_xiao's avatar
alex_xiao committed
176
                        sf = T.exp(m_prev[i] * scale - m_i[i] * scale)
177
178
179
180
181
182
183
                        l_i[i] *= sf
                        scale_factor[i] = sf

                    for i, j in T.Parallel(block_M, dim):
                        acc_o[i, j] *= scale_factor[i]

                    for i, j in T.Parallel(block_M, block_N):
alex_xiao's avatar
alex_xiao committed
184
                        acc_s[i, j] = T.exp(acc_s[i, j] * scale - m_i[i] * scale)
185
186
187
188
189

                    T.reduce_sum(acc_s, row_sum, dim=1)
                    for i in T.Parallel(block_M):
                        l_i[i] += row_sum[i]

190
191
                    # Cast acc_s (accum_dtype) to dtype in registers and directly GEMM with V
                    T.copy(acc_s, acc_s_cast)
192

193
                    T.gemm(acc_s_cast, V_shared, acc_o, policy=GemmWarpPolicy.FullRow)
194
195
196
197
198
199
200
201
202

                l_inv = T.alloc_fragment([block_M], accum_dtype)
                for i in T.Parallel(block_M):
                    safe_l = T.if_then_else(l_i[i] > 1e-6, l_i[i], 1.0)
                    l_inv[i] = 1.0 / safe_l

                for i, j in T.Parallel(block_M, dim):
                    Output[bz, q_block_offset + i, by, j] = acc_o[i, j] * l_inv[i]

203
                bx = current_bx + num_split_q
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

    return main


def main(batch: int = 1,
         heads: int = 8,
         seq_len: int = 4096,
         dim: int = 128,
         is_causal: bool = False,
         groups: int = 1):

    flops_per_matmul = 2.0 * batch * heads * seq_len * seq_len * dim
    total_flops = 2 * flops_per_matmul
    if is_causal:
        total_flops *= 0.5

    print("Starting autotuning for FlashAttention-V2...")
    kernel = fast_flashattn(batch, heads, seq_len, dim, is_causal, groups=groups)
    print(f"Autotuning finished. Best Configuration: {kernel.config}")

    ref_program_processed = partial(ref_program, is_causal=is_causal, groups=groups)

    profiler = kernel.get_profiler(tensor_supply_type=tilelang.TensorSupplyType.Normal)

    print("Verifying correctness...")
    profiler.assert_allclose(ref_program_processed, rtol=0.01, atol=0.01)
    print("All checks pass.")

    latency = profiler.do_bench(ref_program_processed, warmup=100)
    print(f"Reference (PyTorch): {latency:.2f} ms | {total_flops / latency * 1e-9:.2f} TFlops")

    latency = profiler.do_bench(warmup=100)
    print(
        f"Fast Flash Attention V2 (Tile-lang): {latency:.2f} ms | {total_flops / latency * 1e-9:.2f} TFlops"
    )


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--batch', type=int, default=1, help='batch size')
    parser.add_argument('--heads', type=int, default=8, help='heads')
    parser.add_argument('--seq_len', type=int, default=4096, help='sequence length')
    parser.add_argument('--dim', type=int, default=128, help='dim')
    parser.add_argument('--is_causal', action='store_true', help='causal')
    parser.add_argument('--groups', type=int, default=1, help='groups')
    args = parser.parse_args()
    main(args.batch, args.heads, args.seq_len, args.dim, args.is_causal, args.groups)