example_amd_flash_attn_fwd.py 9.46 KB
Newer Older
1
2
3
4
import torch
import torch.nn.functional as F
import tilelang
import tilelang.language as T
5
from tilelang.primitives.gemm.base import GemmWarpPolicy
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import itertools
import argparse
from functools import partial


def ref_program(Q, K, V, is_causal, groups=1):
    assert Q.size(
        2) == K.size(2) * groups, f"Q heads {Q.size(2)} K heads {K.size(2)} groups {groups}"
    assert Q.size(
        2) == V.size(2) * groups, f"Q heads {Q.size(2)} V heads {V.size(2)} groups {groups}"
    dim = Q.size(-1)
    K = K.repeat_interleave(groups, dim=2)
    V = V.repeat_interleave(groups, dim=2)
    scores = torch.einsum('bqhd,bkhd->bhqk', Q, K)
    scores = scores / torch.sqrt(torch.tensor(dim, dtype=scores.dtype))
    if is_causal:
        seq_len = Q.size(1)
        mask = torch.tril(torch.ones(seq_len, seq_len, device=scores.device))
        mask = mask.unsqueeze(0).unsqueeze(0)
        scores = scores.masked_fill(mask == 0, float('-inf'))
    attention_weights = F.softmax(scores, dim=-1)
    output = torch.einsum('bhqk,bkhd->bqhd', attention_weights, V)
    return output


def get_configs():
    """Generates configurations for the autotuner, tailored for FA-2 style parallelism."""
33
34
35
36
37
38
39
40
41
42
    block_M = [32, 64, 128, 256]
    block_N = [32, 64, 128, 256]
    threads = [64, 128, 192, 256, 512, 1024]
    num_split_q = [32, 64, 128, 256, 256]
    num_stages = [0]
    enable_rasterization = [True]
    k_pack = [2]
    panel_size = [7, 8, 9, 10]
    qk_coalesced_width = [8]
    v_coalesced_width = [4]
43
44
45

    valid_configs = []

46
47
48
49
50
    for m, n, s, t, stages, r, k, p, qkw, vw in itertools.product(block_M, block_N, num_split_q,
                                                                  threads, num_stages,
                                                                  enable_rasterization, k_pack,
                                                                  panel_size, qk_coalesced_width,
                                                                  v_coalesced_width):
51
52
53
54
55
56
57
        valid_configs.append({
            "block_M": m,
            "block_N": n,
            "num_split_q": s,
            "threads": t,
            "num_stages": stages,
            "enable_rasterization": r,
58
59
60
61
            "k_pack": k,
            "panel_size": p,
            "qk_coalesced_width": qkw,
            "v_coalesced_width": vw,
62
63
64
65
66
67
68
69
        })
    valid_configs.append({
        'block_M': 64,
        'block_N': 64,
        'num_split_q': 64,
        'threads': 256,
        'num_stages': 1,
        'enable_rasterization': True,
70
71
72
73
        'k_pack': 2,
        'panel_size': 64,
        'qk_coalesced_width': 8,
        'v_coalesced_width': 8,
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
    })
    return valid_configs


@tilelang.autotune(configs=get_configs(), cache_input_tensors=True)
@tilelang.jit(out_idx=[3])
def fast_flashattn(
    batch,
    heads,
    seq_len,
    dim,
    is_causal,
    groups,
    block_M: int,
    block_N: int,
    num_split_q: int,
    threads: int,
    num_stages: int,
    enable_rasterization: bool,
    k_pack: int,
94
95
96
    panel_size: int,
    qk_coalesced_width: int,
    v_coalesced_width: int,
97
98
99
100
101
102
103
104
):
    scale = (1.0 / dim)**0.5 * 1.44269504
    head_kv = heads // groups
    q_shape = [batch, seq_len, heads, dim]
    kv_shape = [batch, seq_len, head_kv, dim]
    dtype = "float16"
    accum_dtype = "float"

105
106
    vec_size = qk_coalesced_width
    v_vec_size = v_coalesced_width
107
108
109
110
111
112
113
114
115

    @T.prim_func
    def main(
            Q: T.Tensor(q_shape, dtype),
            K: T.Tensor(kv_shape, dtype),
            V: T.Tensor(kv_shape, dtype),
            Output: T.Tensor(q_shape, dtype),
    ):
        with T.Kernel(num_split_q, batch * heads, threads=threads) as (b_split, byz_combined):
116
            T.use_swizzle(panel_size, enable=enable_rasterization)
117
118
119
120
121
122
123

            bz = byz_combined // heads
            by = byz_combined % heads

            num_q_blocks = T.ceildiv(seq_len, block_M)

            bx = T.alloc_var("int32")
124
            bx = b_split
125

126
            with T.While(bx < num_q_blocks):
127
128
129
130
131
132
133
                acc_o = T.alloc_fragment([block_M, dim], accum_dtype)
                m_i = T.alloc_fragment([block_M], accum_dtype)
                l_i = T.alloc_fragment([block_M], accum_dtype)
                T.fill(acc_o, 0)
                T.fill(m_i, -T.infinity(accum_dtype))
                T.fill(l_i, 0)

134
                current_bx = bx
135
136
137
138
139
                q_block_offset = current_bx * block_M

                Q_shared = T.alloc_shared([block_M, dim], dtype)
                K_shared = T.alloc_shared([block_N, dim], dtype)
                V_shared = T.alloc_shared([block_N, dim], dtype)
140
141
                # Use register fragment for P instead of shared memory to reduce LDS usage
                acc_s_cast = T.alloc_fragment([block_M, block_N], dtype)
142
143
144
145
146
147
148
149
150
151
152
153
154

                acc_s = T.alloc_fragment([block_M, block_N], accum_dtype)
                m_prev = T.alloc_fragment([block_M], accum_dtype)
                scale_factor = T.alloc_fragment([block_M], accum_dtype)

                T.copy(
                    Q[bz, q_block_offset:q_block_offset + block_M, by, :],
                    Q_shared,
                    coalesced_width=vec_size)

                loop_end_k = T.ceildiv(q_block_offset + block_M,
                                       block_N) if is_causal else T.ceildiv(seq_len, block_N)

155
156
                row_sum = T.alloc_fragment([block_M], accum_dtype)

157
158
159
160
161
162
163
164
165
166
167
168
169
170
                for k in T.Pipelined(loop_end_k, num_stages=num_stages):
                    kv_idx = k * block_N

                    T.copy(
                        K[bz, kv_idx:kv_idx + block_N, by // groups, :],
                        K_shared,
                        coalesced_width=vec_size)
                    T.copy(
                        V[bz, kv_idx:kv_idx + block_N, by // groups, :],
                        V_shared,
                        coalesced_width=v_vec_size)

                    if is_causal:
                        for i, j in T.Parallel(block_M, block_N):
171
172
173
174
175
176
177
178
179
180
181
182
                            acc_s[i, j] = T.if_then_else(q_block_offset + i >= kv_idx + j, 0,
                                                         -T.infinity(acc_s.dtype))
                    else:
                        T.clear(acc_s)
                    T.gemm(
                        Q_shared,
                        K_shared,
                        acc_s,
                        transpose_B=True,
                        k_pack=k_pack,
                        policy=GemmWarpPolicy.FullRow,
                    )
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

                    T.copy(m_i, m_prev)
                    T.reduce_max(acc_s, m_i, dim=1, clear=False)

                    for i in T.Parallel(block_M):
                        sf = T.exp2(m_prev[i] * scale - m_i[i] * scale)
                        l_i[i] *= sf
                        scale_factor[i] = sf

                    for i, j in T.Parallel(block_M, dim):
                        acc_o[i, j] *= scale_factor[i]

                    for i, j in T.Parallel(block_M, block_N):
                        acc_s[i, j] = T.exp2(acc_s[i, j] * scale - m_i[i] * scale)

                    T.reduce_sum(acc_s, row_sum, dim=1)
                    for i in T.Parallel(block_M):
                        l_i[i] += row_sum[i]

202
203
                    # Cast acc_s (accum_dtype) to dtype in registers and directly GEMM with V
                    T.copy(acc_s, acc_s_cast)
204

205
                    T.gemm(acc_s_cast, V_shared, acc_o, policy=GemmWarpPolicy.FullRow)
206
207
208
209
210
211
212
213
214

                l_inv = T.alloc_fragment([block_M], accum_dtype)
                for i in T.Parallel(block_M):
                    safe_l = T.if_then_else(l_i[i] > 1e-6, l_i[i], 1.0)
                    l_inv[i] = 1.0 / safe_l

                for i, j in T.Parallel(block_M, dim):
                    Output[bz, q_block_offset + i, by, j] = acc_o[i, j] * l_inv[i]

215
                bx = current_bx + num_split_q
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262

    return main


def main(batch: int = 1,
         heads: int = 8,
         seq_len: int = 4096,
         dim: int = 128,
         is_causal: bool = False,
         groups: int = 1):

    flops_per_matmul = 2.0 * batch * heads * seq_len * seq_len * dim
    total_flops = 2 * flops_per_matmul
    if is_causal:
        total_flops *= 0.5

    print("Starting autotuning for FlashAttention-V2...")
    kernel = fast_flashattn(batch, heads, seq_len, dim, is_causal, groups=groups)
    print(f"Autotuning finished. Best Configuration: {kernel.config}")

    ref_program_processed = partial(ref_program, is_causal=is_causal, groups=groups)

    profiler = kernel.get_profiler(tensor_supply_type=tilelang.TensorSupplyType.Normal)

    print("Verifying correctness...")
    profiler.assert_allclose(ref_program_processed, rtol=0.01, atol=0.01)
    print("All checks pass.")

    latency = profiler.do_bench(ref_program_processed, warmup=100)
    print(f"Reference (PyTorch): {latency:.2f} ms | {total_flops / latency * 1e-9:.2f} TFlops")

    latency = profiler.do_bench(warmup=100)
    print(
        f"Fast Flash Attention V2 (Tile-lang): {latency:.2f} ms | {total_flops / latency * 1e-9:.2f} TFlops"
    )


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--batch', type=int, default=1, help='batch size')
    parser.add_argument('--heads', type=int, default=8, help='heads')
    parser.add_argument('--seq_len', type=int, default=4096, help='sequence length')
    parser.add_argument('--dim', type=int, default=128, help='dim')
    parser.add_argument('--is_causal', action='store_true', help='causal')
    parser.add_argument('--groups', type=int, default=1, help='groups')
    args = parser.parse_args()
    main(args.batch, args.heads, args.seq_len, args.dim, args.is_causal, args.groups)