"git@developer.sourcefind.cn:gaoqiong/migraphx.git" did not exist on "d0ed7b0e849afbcd7abdf478b98fb7dca3c72650"
test_tilelang_gemm_mfma_intrinsic.py 8.72 KB
Newer Older
1
2
3
4
5
6
7
8
9
import torch
import tilelang.testing
from tilelang import tvm as tvm
import tilelang.language as T
from tilelang.intrinsics import make_mfma_swizzle_layout as make_swizzle_layout
from tilelang.intrinsics.mfma_macro_generator import (
    MatrixCoreIntrinEmitter,)
from tilelang.transform import simplify_prim_func

10
tilelang.testing.set_random_seed(0)
11
12
13
14
15
16
17
18
19
20


@simplify_prim_func
def tl_matmul(
    M,
    N,
    K,
    in_dtype,
    out_dtype,
    accum_dtype,
21
22
23
    a_transposed=False,
    b_transposed=True,
    k_pack=1,
24
25
26
27
):

    micro_size_x = micro_size_y = micro_size_k = 16

28
    if in_dtype in {"float8_e4m3fnuz", "int8"}:
29
30
        micro_size_k = 32

31
32
33
34
    block_row_warps = 2
    block_col_warps = 2
    warp_row_tiles = 32
    warp_col_tiles = 32
35
36
37

    chunk = 32 * k_pack

38
    shared_scope = "shared"
39
40
41
42
43
44
    cache_write_shared = False

    block_M = block_row_warps * warp_row_tiles
    block_N = block_col_warps * warp_col_tiles
    block_K = chunk

45
46
47
48
    A_shape = (K, M) if a_transposed else (M, K)
    B_shape = (N, K) if b_transposed else (K, N)
    A_shared_shape = (block_K, block_M) if a_transposed else (block_M, block_K)
    B_shared_shape = (block_N, block_K) if b_transposed else (block_K, block_N)
49
    C_shared_shape = (
50
        block_M // micro_size_x,
51
52
53
54
55
56
57
        block_N // micro_size_y,
        micro_size_x,
        micro_size_y,
    )

    warp_size = 64
    threads = warp_size * (block_row_warps * block_col_warps)
58
59
    local_size_a = (k_pack * micro_size_x * micro_size_k) // warp_size
    local_size_b = (k_pack * micro_size_y * micro_size_k) // warp_size
60
61
62
63
64
65
66
67
68
    local_size_c = (micro_size_x * micro_size_y) // warp_size
    warp_rows = warp_row_tiles // micro_size_x
    warp_cols = warp_col_tiles // micro_size_y

    # MMA Wrapper to Auto Generate Code for MMA
    mfma_emitter = MatrixCoreIntrinEmitter(
        a_dtype=in_dtype,
        b_dtype=in_dtype,
        accum_dtype=accum_dtype,
69
70
        a_transposed=a_transposed,
        b_transposed=b_transposed,
71
72
73
74
75
        block_row_warps=block_row_warps,
        block_col_warps=block_col_warps,
        warp_row_tiles=warp_row_tiles,
        warp_col_tiles=warp_col_tiles,
        chunk=chunk,
76
        k_pack=k_pack,
77
78
79
80
    )

    @T.prim_func
    def main(
81
82
83
            A: T.Tensor(A_shape, in_dtype),
            B: T.Tensor(B_shape, in_dtype),
            C: T.Tensor((M, N), out_dtype),
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
    ):
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=threads) as (bx, by):

            A_shared = T.alloc_shared(A_shared_shape, in_dtype, scope=shared_scope)
            B_shared = T.alloc_shared(B_shared_shape, in_dtype, scope=shared_scope)
            C_shared = T.alloc_shared(C_shared_shape, out_dtype, scope=shared_scope)
            A_local = T.alloc_local((warp_rows * local_size_a), in_dtype)
            B_local = T.alloc_local((warp_cols * local_size_b), in_dtype)
            C_local = T.alloc_local((warp_rows * warp_cols * local_size_c), accum_dtype)

            T.annotate_layout({
                A_shared: make_swizzle_layout(A_shared),
                B_shared: make_swizzle_layout(B_shared),
            })

            # Improve L2 Cache
            T.use_swizzle(panel_size=10)

            T.clear(C_local)

            for ko in T.Pipelined((K // block_K), num_stages=0):

                # Load A into shared memory
107
108
109
110
                if a_transposed:
                    T.copy(A[ko * block_K, by * block_M], A_shared)
                else:
                    T.copy(A[by * block_M, ko * block_K], A_shared)
111
112

                # Load B into shared memory
113
114
115
116
                if b_transposed:
                    T.copy(B[bx * block_N, ko * block_K], B_shared)
                else:
                    T.copy(B[ko * block_K, bx * block_N], B_shared)
117

118
                for ki in T.serial(0, (block_K // (k_pack * micro_size_k))):
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

                    # Load A into fragment
                    mfma_emitter.ldmatrix_a(
                        A_local,
                        A_shared,
                        ki,
                    )

                    # Load B into fragment
                    mfma_emitter.ldmatrix_b(
                        B_local,
                        B_shared,
                        ki,
                    )

                    # Perform Matrix Multiplication
                    mfma_emitter.mfma(A_local, B_local, C_local)

            # Perform STMatrix
            if cache_write_shared:
                mfma_emitter.stmatrix(
                    C_local,
                    C_shared,
                )

                # Store shared into global
                for i, j in T.Parallel(block_M, block_N):
                    C[by * block_M + i, bx * block_N + j] = C_shared[
                        i // micro_size_x,
                        j // micro_size_y,
                        i % micro_size_x,
                        j % micro_size_y,
                    ]
            else:
                mfma_emitter.stmatrix(
                    C_local,
                    C,
                    pid_m=by,
                    pid_n=bx,
                )

    return main


163
164
165
166
167
168
169
170
171
172
173
174
def assert_tl_matmul_correctness(M,
                                 N,
                                 K,
                                 in_dtype,
                                 out_dtype,
                                 accum_dtype="float32",
                                 a_transposed=False,
                                 b_transposed=True,
                                 k_pack=1):
    matmul = tl_matmul(M, N, K, in_dtype, out_dtype, accum_dtype, a_transposed, b_transposed,
                       k_pack)
    print(matmul)
175
176
    kernel = tilelang.compile(matmul)
    src_code = kernel.get_kernel_source()
177
178
    # src_code is the generated cuda source
    assert src_code is not None
179
180
    A_shape = (K, M) if a_transposed else (M, K)
    B_shape = (N, K) if b_transposed else (K, N)
181
    if in_dtype == "int8":
182
183
        A = torch.randint(-128, 127, A_shape, device="cuda", dtype=torch.int8)
        B = torch.randint(-128, 127, B_shape, device="cuda", dtype=torch.int8)
184
185
186
    elif in_dtype == "float8_e4m3fnuz":
        A = torch.rand(A_shape, device="cuda", dtype=torch.float16).to(getattr(torch, in_dtype))
        B = torch.rand(B_shape, device="cuda", dtype=torch.float16).to(getattr(torch, in_dtype))
187
    else:
188
189
        A = torch.rand(A_shape, device="cuda", dtype=getattr(torch, in_dtype))
        B = torch.rand(B_shape, device="cuda", dtype=getattr(torch, in_dtype))
190
191
    C = torch.zeros(M, N, device="cuda", dtype=getattr(torch, out_dtype))

192
    kernel(A, B, C)
193
    print(kernel.get_kernel_source())
194

195
    profiler = kernel.get_profiler()
196

197
    latency = profiler.do_bench()
198
199
200
201

    # Ensure that the latency is not None
    assert latency is not None

202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
    if a_transposed and b_transposed:
        # Get Reference Result
        ref_c = torch.matmul(A.T.to(torch.float32),
                             B.T.to(torch.float32)).to(getattr(torch, out_dtype))
    elif a_transposed and not b_transposed:
        # Get Reference Result
        ref_c = torch.matmul(A.Tto(torch.float32),
                             B.to(torch.float32)).to(getattr(torch, out_dtype))
    elif not a_transposed and b_transposed:
        # Get Reference Result
        ref_c = torch.matmul(A.to(torch.float32),
                             B.T.to(torch.float32)).to(getattr(torch, out_dtype))
    else:
        # Get Reference Result
        ref_c = torch.matmul(A.to(torch.float32), B.to(torch.float32)).to(getattr(torch, out_dtype))

218
219
220
221
222
223
224
225
226
    print(C)
    print(ref_c)
    torch.testing.assert_close(C, ref_c, rtol=1e-2, atol=1e-2)


@tilelang.testing.requires_rocm
def test_assert_tl_matmul():
    assert_tl_matmul_correctness(128, 128, 128, "float16", "float16")
    assert_tl_matmul_correctness(128, 256, 256, "float16", "float32")
227
    assert_tl_matmul_correctness(128, 256, 256, "float16", "float32", k_pack=2)
228
229
230
    assert_tl_matmul_correctness(128, 128, 128, "int8", "int32", accum_dtype="int32")
    assert_tl_matmul_correctness(128, 256, 256, "int8", "int32", accum_dtype="int32")
    assert_tl_matmul_correctness(128, 256, 256, "int8", "int32", accum_dtype="int32", k_pack=2)
231
232
233
234
    assert_tl_matmul_correctness(
        128, 256, 256, "int8", "int32", b_transposed=False, accum_dtype="int32")
    assert_tl_matmul_correctness(
        128, 256, 256, "int8", "int32", b_transposed=False, accum_dtype="int32", k_pack=2)
alex_xiao's avatar
alex_xiao committed
235
236
237
238
239
240
    assert_tl_matmul_correctness(128, 128, 128, "float8_e4m3fnuz", "float16")
    assert_tl_matmul_correctness(128, 256, 256, "float8_e4m3fnuz", "float32")
    assert_tl_matmul_correctness(128, 256, 256, "float8_e4m3fnuz", "float32", k_pack=2)
    assert_tl_matmul_correctness(128, 256, 256, "float8_e4m3fnuz", "float32", b_transposed=False)
    assert_tl_matmul_correctness(
        128, 256, 256, "float8_e4m3fnuz", "float32", b_transposed=False, k_pack=2)
241
242
243
244


if __name__ == "__main__":
    tilelang.testing.main()