"vscode:/vscode.git/clone" did not exist on "9ceb96c0c5edbae4b5f5e2701f4bc702af96b087"
test_tilelang_gemm_mfma_intrinsic.py 6.21 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
import torch
import torch.backends
import tilelang.testing
from tilelang import tvm as tvm
import tilelang.language as T
from tilelang.intrinsics import make_mfma_swizzle_layout as make_swizzle_layout
from tilelang.intrinsics.mfma_macro_generator import (
    MatrixCoreIntrinEmitter,)
from tilelang.transform import simplify_prim_func

11
tilelang.testing.set_random_seed(0)
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164


@simplify_prim_func
def tl_matmul(
    M,
    N,
    K,
    in_dtype,
    out_dtype,
    accum_dtype,
):
    assert in_dtype in [
        "float16",
        "int8",
    ], "Currently only float16 and int8 are supported"
    assert out_dtype in [
        "float16",
        "float32",
        "int32",
    ], "Currently only float16, float32 and int32 are supported"

    micro_size_x = micro_size_y = micro_size_k = 16

    if out_dtype == "int32":
        micro_size_k = 32

    block_row_warps = 1
    block_col_warps = 1
    warp_row_tiles = 16
    warp_col_tiles = 16
    chunk = 32
    shared_scope = "shared.dyn"
    cache_write_shared = False

    block_M = block_row_warps * warp_row_tiles
    block_N = block_col_warps * warp_col_tiles
    block_K = chunk

    A_shape = (M, K)
    B_shape = (N, K)
    A_shared_shape = (block_M, block_K)
    B_shared_shape = (block_N, block_K)
    C_shared_shape = (
        block_M // micro_size_x,
        block_N // micro_size_y,
        micro_size_x,
        micro_size_y,
    )

    warp_size = 64
    threads = warp_size * (block_row_warps * block_col_warps)
    local_size_a = (micro_size_x * micro_size_k) // warp_size
    local_size_b = (micro_size_y * micro_size_k) // warp_size
    local_size_c = (micro_size_x * micro_size_y) // warp_size
    warp_rows = warp_row_tiles // micro_size_x
    warp_cols = warp_col_tiles // micro_size_y

    # MMA Wrapper to Auto Generate Code for MMA
    mfma_emitter = MatrixCoreIntrinEmitter(
        a_dtype=in_dtype,
        b_dtype=in_dtype,
        accum_dtype=accum_dtype,
        a_transposed=False,
        b_transposed=True,
        block_row_warps=block_row_warps,
        block_col_warps=block_col_warps,
        warp_row_tiles=warp_row_tiles,
        warp_col_tiles=warp_col_tiles,
        chunk=chunk,
    )

    @T.prim_func
    def main(
            A: T.Buffer(A_shape, in_dtype),
            B: T.Buffer(B_shape, in_dtype),
            C: T.Buffer((M, N), out_dtype),
    ):
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=threads) as (bx, by):

            A_shared = T.alloc_shared(A_shared_shape, in_dtype, scope=shared_scope)
            B_shared = T.alloc_shared(B_shared_shape, in_dtype, scope=shared_scope)
            C_shared = T.alloc_shared(C_shared_shape, out_dtype, scope=shared_scope)
            A_local = T.alloc_local((warp_rows * local_size_a), in_dtype)
            B_local = T.alloc_local((warp_cols * local_size_b), in_dtype)
            C_local = T.alloc_local((warp_rows * warp_cols * local_size_c), accum_dtype)

            T.annotate_layout({
                A_shared: make_swizzle_layout(A_shared),
                B_shared: make_swizzle_layout(B_shared),
            })

            # Improve L2 Cache
            T.use_swizzle(panel_size=10)

            T.clear(C_local)

            for ko in T.Pipelined((K // block_K), num_stages=0):

                # Load A into shared memory
                for i, k in T.Parallel(block_M, block_K):
                    A_shared[i, k] = A[by * block_M + i, ko * block_K + k]

                # Load B into shared memory
                for j, k in T.Parallel(block_N, block_K):
                    B_shared[j, k] = B[bx * block_N + j, ko * block_K + k]

                for ki in T.serial(0, (block_K // micro_size_k)):

                    # Load A into fragment
                    mfma_emitter.ldmatrix_a(
                        A_local,
                        A_shared,
                        ki,
                    )

                    # Load B into fragment
                    mfma_emitter.ldmatrix_b(
                        B_local,
                        B_shared,
                        ki,
                    )

                    # Perform Matrix Multiplication
                    mfma_emitter.mfma(A_local, B_local, C_local)

            # Perform STMatrix
            if cache_write_shared:
                mfma_emitter.stmatrix(
                    C_local,
                    C_shared,
                )

                # Store shared into global
                for i, j in T.Parallel(block_M, block_N):
                    C[by * block_M + i, bx * block_N + j] = C_shared[
                        i // micro_size_x,
                        j // micro_size_y,
                        i % micro_size_x,
                        j % micro_size_y,
                    ]
            else:
                mfma_emitter.stmatrix(
                    C_local,
                    C,
                    pid_m=by,
                    pid_n=bx,
                )

    return main


def assert_tl_matmul_correctness(M, N, K, in_dtype, out_dtype, accum_dtype="float32"):
    matmul = tl_matmul(M, N, K, in_dtype, out_dtype, accum_dtype)
165
166
    kernel = tilelang.compile(matmul)
    src_code = kernel.get_kernel_source()
167
168
169
170
171
172
173
174
175
176
177
178
    # src_code is the generated cuda source
    assert src_code is not None

    if in_dtype == "int8":
        A = torch.randint(-128, 127, (M, K), device="cuda", dtype=torch.int8)
        B = torch.randint(-128, 127, (N, K), device="cuda", dtype=torch.int8)
    else:
        A = torch.rand(M, K, device="cuda", dtype=getattr(torch, in_dtype))
        B = torch.rand(N, K, device="cuda", dtype=getattr(torch, in_dtype))

    C = torch.zeros(M, N, device="cuda", dtype=getattr(torch, out_dtype))

179
    kernel(A, B, C)
180

181
    profiler = kernel.get_profiler()
182

183
    latency = profiler.do_bench()
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

    # Ensure that the latency is not None
    assert latency is not None

    # Get Reference Result
    ref_c = torch.matmul(A.to(torch.float32), B.T.to(torch.float32)).to(getattr(torch, out_dtype))
    print(C)
    print(ref_c)
    torch.testing.assert_close(C, ref_c, rtol=1e-2, atol=1e-2)


@tilelang.testing.requires_rocm
def test_assert_tl_matmul():
    assert_tl_matmul_correctness(128, 128, 128, "float16", "float16")
    assert_tl_matmul_correctness(128, 256, 256, "float16", "float32")


if __name__ == "__main__":
    tilelang.testing.main()